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Preface

“Language barrier” is one of the biggest challenges that humans face in commu-
nication. In the Old Testament, it is said that God created different languages when
humans acted in defiance and attempted to build the Tower of Babel against His
wishes. Whether this is true or not, it is an unquestionable fact that smooth com-
munication has been hindered because of the different words we speak. Speech
translation device—often makes its appearance in science fiction—which imme-
diately translates spoken words into different languages has been the target of
research and development in Japan since 1986. After some 30 years of constant
effort, this dream device has been made available for practical use in certain fields
and under certain conditions.

The history of research and development on machine translation can be traced
back to the 1940s, but it wasn’t until the 1983 World Telecommunication Exhibition
(TELECOM 83) that multilingual speech translation technology—speech
recognition and speech synthesis combined with machine translation—really caught
people’s attention. In 1986, the Advanced Telecommunications Research Institute
International (ATR) was established in Japan, followed by the launch of a research
project on speech-to-speech translation. Researchers from around the world gathered
to conduct research and development under this project. In the 1990s, machine
translation was a dictionary- and rule-based technology, but by the 2000s, alongside
the diffusion of the Internet and the Web, the focus on research and development
shifted to a bilingual corpus-based statistical approach, which took advantage of not
having to consider the rules such as grammar.

In July 2010, the National Institute of Information and Communications
Technology (NICT) initiated the world’s first field experiment of a network-based
multilingual speech-to-speech translation system using a smartphone application.
To support further languages, NICT then led the establishment of an international
consortium to initiate a global field experiment in cooperation with as many as 32
research entities of the world who had been individually engaged in developing
speech translation technologies for their own languages. In April 2014, a govern-
mental project “Global Communication Plan (GCP)” was launched in Japan to
promote research and development on multilingual speech translation technology
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and its implementation to fields such as travel, medical care, disaster prevention,
and daily living, with the aim to eliminate the language barriers for foreign
nationals and inbound tourists. With NICT taking the initiative, the industry, aca-
demia, and government together are engaged in research and development of a
high-precision multilingual speech translation technology, namely by applying
deep-learning approaches. NICT’s speech translation application “VoiceTra” has
been released as part of the field experiment under the GCP and serves as the key
platform for its promotion. Thanks to the efforts from the initial field experiment
and the achievements from the international collaboration, the application is cur-
rently capable of handling speech translation between as many as 16 languages and
further improvements are being made, especially for the 10 most frequently used
languages1 in Japan that have been set forth as the target under the GCP.

After Google announced the development of the Google Neural Machine
Translation in September 2016, a significant paradigm shift from statistical to
neural machine translation has been taking place. The latest version of VoiceTra has
also applied neural machine translation between Japanese and English and achieved
dramatic improvements in accuracy. Let us look at a couple of comparison
examples of different translation applications:

(1) The English translation results to the Japanese input “今日は全国的に雨の予
報です” were:

– “Today, it is forecasted to rain all over the country” (by VoiceTra);
– “Today’s rain forecast nationwide” (by App X);
– “It is forecast of rain nationwide today” (by App Y); and

(2) The English translation results to the Japanese input “昨今のニューラル翻訳

システムの性能は目を見張るものがある” were:

– “The performance of the recent neural translation system is eye-catching”
(by VoiceTra);

– “The performance of recent neural translation systems is spectacular”
(by App X);

– “The performance of recent neural translation systems is remarkable”
(by App Y).

As you may see, the difference in the level of performance between different
translation systems for general use is hard to tell and choosing one over another is a
difficult task. However, while further evaluation is required, we may see from a few
more examples below that systems targeted for specific purposes, i.e., VoiceTra, as
mentioned earlier, achieve better results in terms of accuracy within the targeted
domain due to the sufficient number of corpora and dictionaries prepared for the
respective domains.

1Japanese, English, Chinese, Korean, Thai, French, Indonesian, Vietnamese, Spanish, and
Myanmar.

vi Preface



(1) [Domain: Daily living] The English translation results to the Japanese input
“トイレが流れません” were:

– “The toilet doesn’t flush” (by VoiceTra, Evaluation2: A);
– “The toilet does not flow” (by App X and Y, Evaluation: B);

(2) [Domain: Travel] the English translation results to the Japanese input “富士山

五合目まではバスで行けます” were:

– “You can go to the fifth station of Mount Fuji by bus” (by VoiceTra,
Evaluation A);

– “It is possible to go by bus to Mt. Fuji” (by App X, Evaluation: C); and
– “You can go by bus to the 5th of Mt. Fuji” (by App Y, Evaluation: B); and

lastly,

(3) [Domain: Medical care] the English translation results to the Japanese input
“認知症というと、治らないものばかりだと思っていました” were:

– “I thought dementia is not curable” (by VoiceTra, Evaluation: A);
– “When thinking of dementia, I thought that only things did not go away”

(by App X, Evaluation: C); and
– “I thought that dementia was the only thing that was not cured” (by App Y,

Evaluation: C).

This book explores the fundamentals of the research and development on
multilingual speech-to-speech translation technology and its social implementation
process which have been conducted as part of the GCP. The practicability of such
technology is rapidly increasing due to the latest developments in deep-learning
algorithms. Multilingual speech translation applications for smartphones are very
handy, however, concerns do exist on the interactivity of the operation that may
keep smooth communication from being ensured in real use; therefore, the devel-
opment of translation devices for specific purposes is also ongoing. Namely,
easy-to-use, high-precision translation services that are distinctive from those for
smartphones and tablets are being developed by industries, and the final sections of
this book will present one example of such practical technology specifically
designed for hospitals. In such way, the GCP is an unprecedented type of scheme
allowing open innovation to utilize multilingual translation technology in every
corner of society.

Yutaka Kidawara
Director General

Advanced Speech Translation Research and
Development Promotion Center (ASTREC), NICT Kyoto Japan

2The samples were evaluated on a scale of A (perfectly accurate) – D (inaccurate).
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Chapter 1
Multilingualization of Speech Processing

Hiroaki Kato, Shoji Harada, Tasuku Kitade, and Yoshinori Shiga

Abstract Speech-to-speech translation is a technology that connects people of
different languages together and its multilingualization dramatically expands the
circle of people connected. “Population” in Table 1.1a shows the potential number
of people who can be part of the circle, when the corresponding language benefits
from the technology. However, the same table also tells us that the languages of the
world are incredibly diverse, and therefore multilingualization is not an easy task.
Nevertheless, methods of processing speech sounds have been devised and
developed uniformly regardless of language differences. What made this possible, is
the wide commonality across languages due to the nature of language—it is a
spontaneous tool created for the single purpose of mutual communication between
humans who basically share the same biological hardware. This chapter will
describe the multilingualization of automatic speech recognition (ASR) and
text-to-speech synthesis (TTS); the two speech-related components of the three that
constitute the speech-to-speech translation technology.
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Table 1.1 Language characteristics

(a)

Language name (2nd
row: in the
orthography)

Population
(million
people)1

Language
family

Morphological
type

Word
order2

Number of
phonemes3

Japanese
にほん語

127 (L1) Japonic Agglutinative SOV 5 v, 14 c
0 t

English
English

360 (L1)
1860 (+L2)

Germanic
Indo-European

Fusional SVO 11 v, 24 c
0 t

Chinese
汉语

1200 * (L1) Sinitic
Sino-Tibetan

Isolating SVO 6 v, 19 c
4 t

Korean
한국어

77 (L1) Koreanic Agglutinative SOV 9 v, 19 c
0 t

Thai
ภาษาไทย

60 (L1) Tai-Kadai Isolating SVO 9 v, 21 c
5 t

Vietnamese
Tiếng Việt

75 (L1) Mon-Khmer
Austroasiatic

Isolating SVO
(OSV)

11 v, 19 c
6 t

Indonesian
Bahasa Indonesia

23 (L1)
163 (+L2)

Austronesian Agglutinative SVO 6 v, 18 c
0 t

Myanmar 33 (L1)
44 (+L2)

Tibeto-Burman
Sino-Tibetan

Agglutinative SOV 8 v, 23 c
3 t

French
Français

75 (L1)
338 (+L2)

Italic
Indo-European

Fusional SVO 11 v, 20 c
0 t

Spanish
Idioma español

438 (L1)
528 (+L2)

Italic
Indo-European

Fusional SVO 5 v, 17 c
0 t

Portuguese
Português

220 (L1)
250 (+L2)

Italic
Indo-European

Fusional SVO 8 v, 19 c
0 t

Russian
Pyccкий язык

150 (L1)
260 (+L2)

Slavic
Indo-European

Fusional SVO 10 v, 32 c
0 t

Arabic
ةيبرعلاةغللا

340 (L1) Semitic
Afro-Asiatic

Fusional VSO
(SVO)

3 v, 28 c
0 t

Khmer 16 (L1) Mon-Khmer
Austroasiatic

Isolating SVO 9 v, 21 c
0 t

(b)

Lang.
code4

Writing system Number of
graphemes5

Writing
direction

Word
separator

Numerals6

ja, jpn Chinese
logograms + Kana
phonograms

2998
lg7 + 96 ph

Left-to-right
up-to-down

NA 〇一二三四五六
七八九

en, eng Alphabetical
phonograms

26 ph (Latin) Left-to-right White
spaces

NA

zh, zho Chinese logograms 8105 lg7 Left-to-right
up-to-down

NA 〇一二三四五六
七八九

ko, kor Hangul phonograms 24 ph
(Hangul)

Left-to-right
up-to-down

White
spaces8

NA

th, tha Brahmic phonograms 42 ph (Thai) Left-to-right NA ๐๑๒๓๔๕๖๗๘๙
vi, vie Alphabetical

phonograms
29 ph (Latin) Left-to-right White

spaces
NA

(continued)
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1.1 Basic Framework of Speech Processing and Its
Multilingualization

This section describes a brief outline of the basic framework of speech processing
and its multilingualization. Tables 1.1a, b list the characteristics of the languages
that the authors’ R&D group has dealt with in the past. All text and speech samples
exemplified in this section are taken from the languages listed on the tables.

Table 1.1 (continued)

(b)

Lang.
code4

Writing system Number of
graphemes5

Writing
direction

Word
separator

Numerals6

id, ind Alphabetical
phonograms

26 ph (Latin) Left-to-right White
spaces

NA

my,
mya

Brahmic phonograms 33 ph
(Myanmar)

Left-to-right NA

fr, fra Alphabetical
phonograms

28 ph (Latin) Left-to-right White
spaces

NA

es, spa Alphabetical
phonograms

27 ph (Latin) Left-to-right White
spaces

NA

pt, por Alphabetical
phonograms

26 ph (Latin) Left-to-right White
spaces

NA

ru, rus Alphabetical
phonograms

33 ph
(Cyrillic)

Left-to-right White
spaces

NA

ar, ara Arabic phonograms 28 ph
(Arabic)

Right-to-left NA ٠١٢٣٤٥٦٧٨٩

km,
khm

Brahmic phonograms 33 ph
(Khmer)

Left-to-right NA

1L1: Native language population. +L2: Native and second-language population
2Dominant word order of subject, object, and verb
3Vowels (v), consonants (c), and tones (t). Long vowels, diphthongs, nasal vowels and medial vowels
and consonants are excluded
4Language code by ISO639-1 (2 letters) and ISO639-2T (3 letters)
5Logograms (lg) and phonograms (ph). Diacritics are excluded
6Figures corresponding to 0–9, used except for Arabic numerals
7Official regular-use character set in each country
8Occasionally inserted between two words or word sequences
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1.1.1 Diversity and Commonality in Spoken Languages

1. Structure of Language

(a) Phoneme and Phone

Phonemes and phones are distinctly different terms, although they are not always
used properly. Phoneme is the minimal unit of speech sounds that allow us to
distinguish words from one another. Since words are language dependent, the
definition of “phoneme” differs between languages. The set of phonemes is fixed in
a language or dialect and it is typically divided into vowels and consonants. On the
other hand, “phone” is defined as the smallest perceptible discrete segment of a
speech sound. Practically, “perceptible” would depend upon whether a trained
expert can distinguish or judge that one is different from the other. The set of
phones is fixed regardless of languages, but its size greatly fluctuates depending on
how precisely each element is distinguished (see [1] for details). A phoneme may
correspond to one or more phones. For example, the phoneme of the second
consonant in the English word “water” is always fixed as “t”, while phoneme “t”
can either be an alveolar plosive consonant phone “t” or an alveolar tap consonant
phone “r”. Different phones included in the same phoneme are called allophones.
Lexical tones are regarded as phonemes as they contribute to word distinction. For
example, Vietnamese has six lexical tones or tonal phonemes. Table 1.1a lists the
numbers of phonemes, i.e., vowels, consonants, and tones, in each language.

(b) Morpheme and Word

The minimal distinctive unit of grammar is called morpheme. Morpheme is also the
smallest unit that contains meaning. A word consists of one or more morphemes
and is intuitively known as the unit of expression, especially in languages whose
writing system has a word separator (see Table 1.1b). Its grammatical function is
called part-of-speech (POS). According to POS, all words are classified into content
words having unique meanings such as nouns, verbs, adjectives, and function
words having primarily grammatical functions such as prepositions and conjunc-
tions. In speech processing, “word” is an indispensable concept as it serves as the
basic unit of language models (Sect. 1.2.3), the heading of pronunciation dic-
tionaries, and the metric unit in evaluating the performance of a system. Note,
however, that the linguistic definition of “word” is in fact ambiguous, and therefore
it is flexibly or conveniently defined in speech processing, which may in cases
disagree with the native speakers’ intuitions.

(c) Writing System and Grapheme

The writing system may be the most impressive example that shows the diversity of
languages (see the 1st column of Table 1.1a). Speech processing must face the
diversity in the writing system as its mission is to accomplish mutual conversion
between speech and text. The conventional writing system of a language is called
orthography, and the minimal contrastive unit in the system is called grapheme.
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In modern natural languages, most graphemes can be classified into two types:
logograms1 such as kanjis, and phonograms2 such as alphabets. Table 1.1b lists the
writing systems and the number of graphemes in each language.

In logograms, each character has its own meaning. For example, the character
“耳” originates from the shape of a human ear and means “ear.” As different
languages have different sounds in expressing “ear,” the reading differs in each
language; it is read as “er” in Chinese, and “mimi” in Japanese (original lexicon).

In phonograms, each letter has no unique meaning and it only represents a
sound. However, languages whose letters and sounds perfectly correspond
one-to-one with each other are extremely rare to find and generally have many
irregularities and exceptions. Among the languages that adopt the phonographical
writing system as shown in Table 1.1b, Indonesian and Vietnamese relatively
maintain a regular correspondence between letters and sounds, while English does
not; seeing that “write” and “right” are pronounced the same. The incongruity
between spelling and pronunciation in most cases is caused by the chronological
change of pronunciation. The modern orthography of Indonesian and Vietnamese
has a relatively short history. Since speech processing uses phonemes as the basic
unit, conversion from a grapheme to the corresponding phoneme notation (this is
called G2P) is essential regardless of the writing system.

2. Acoustic Features of Speech

Speech processing in speech-to-speech translation basically deals with common
acoustic features that are independent of languages, because it only targets the
sounds that humans can produce and uses only the features that humans can exploit
through their auditory system. The three independent attributes that humans can
perceptually extract from a sound, i.e., the three attributes of tone, are loudness,
pitch, and timbre. Their corresponding physical quantities are power, fundamental
frequency (fo), and spectrum. ASR and TTS stand primarily on these acoustic
features.

The spectrum, typically the power spectrum density, is generally used as its
contour information (e.g. cepstral coefficients) by smoothing out its fine structure.
The spectral contour closely approximates the resonance characteristics of the

1Kanji is assumed to be the only logographic system that occupies the status of the standard
grapheme in modern languages. It has been popular in East Asia; in addition to modern Chinese
and Japanese, it was also the standard grapheme in Korean (still used occasionally) and
Vietnamese in the past.
2Three distinct major groups are found in phonograms all of which are said to have direct or
indirect roots in Mesopotamia. First, alphabetical systems, which spread out to the West, mainly
developed in Europe and then to the world, assign separate characters (not diacritic marks) for both
vowels and consonants, exemplified by Cyrillic and Latin scripts. Next, the Brahmic family, which
first prevailed in India, and onto other parts of South Asia and Southeast Asia, basically has only
consonant characters with designation of vowels and tones (if any) as diacritic marks, including
Khmer, Thai and Myanmar scripts. The last group, which remained in the Middle Eastern region,
is represented by the Arabic script and is basically composed of only consonant characters, and the
designation of vowels is optional.
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acoustic cavities involved in speech production, i.e., the vocal tract, and therefore
reflects the geometrical status of the vocal tract at a certain moment in speech
activity. Thus, it tells us, for example, where the tongue tip was in the oral cavity,
how it moved, if the sound had passed through the nasal cavity, and so on. These
are the exact information which characterize the vowels and consonants, excluding
voiced/unvoiced contrasts.

The fo indicates the presence or absence of the vibration of the vocal folds and
its frequency. The sound in which a clear fo cannot be observed is called unvoiced
and that with a clear fo is called voiced; this contrast is typically found between “p,
t, k, s, f” and “b, d, g, z, v”. In addition, the temporal pattern of fo is a major clue in
distinguishing lexical tones. A well-known role of fo, aside from the above lexical
information, is the expression of speech called intonation. In languages in which
literal information does not distinguish declarative and yes-no interrogative sen-
tences such as Portuguese, the meaning may not be correctly recognized without fo.

ASR uses the spectrum and fo (or the quantities derived therefrom) as the main
acoustic features. On the other hand, power, fo, and spectrum roughly correspond to
the basic elements that can be controlled pseudo-independently in the human
speech production process, which are: energy supply from the lung, vocal-fold
vibration, and vocal-tract shape. Therefore, by independently manipulating these
acoustic features, TTS can generate a flexible and naturally sounding speech.

1.1.2 Challenges Toward Multilingualization

1. Speech Corpus

The system development of ASR and TTS is equivalent to teaching machines about
the correspondence between speech and text. Perhaps the teaching methodology
can be shared with different languages, but the teaching materials must be different.
Thus, it is safe to assume that the creation of teaching materials is the most fun-
damental task in multilingualization. Then, how many and what kind of materials
are necessary?

In theory, the least amount of material necessary would be the set of phonemes,
each of which should be accompanied by its corresponding sound, in order to
distinguish the words in a language. Guessing from Table 1.1a, the total number of
phonemes per language would not exceed 50. Since the duration of a single pho-
neme falls within the range of approximately 5–200 ms—say an average of 100 ms
—the total duration would be 100 � 50 = 5000 ms. This is only 5 s—unfortu-
nately this does not work, because a phoneme does not correspond to a single sound
but to a countless number of sounds. The same phoneme can be differently uttered
depending on the phonemic context (Sect. 1.2.2), and many other contextual factors
(Table 3.1), in addition to the difference in speakers. Therefore, a certain amount of
sentence speech with variations from real environments and the corresponding
orthographical text material are required. This is called a speech corpus.
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The requirements for speech corpora are greatly different between ASR and
TTS. A general-purpose ASR needs to recognize speech of unspecified users under
various environments. Therefore, a large number of speakers are required with
well-balanced genders, ages, and places of birth. The intensity and contents of
background noise should be ranged as much as possible. The speaking style can be
read, spontaneous or both. The total duration per person can be short.

In contrast, a general-purpose TTS should simply provide a single speaker’s
voice. Therefore, only one speaker is required (or a male and a female, if possible).
It is ideal if he/she speaks fluently and naturally with a clear articulation without
any trace of accent (dialectal or sociolectal). The recording environment must be
extremely quiet with minimum reverberation. The speaking style and speed must be
kept constant as much as possible throughout the whole recording session. The total
duration per person must be far longer than that of ASR.

According to the authors’ experiences, even when limiting the domain to a
certain extent, the amount of speech corpora necessary to develop a minimum
practical system seems to be a bit longer than 5 s; a rough estimation is about 5 h
per speaker for TTS, or about 500 h (e.g., 3000 speakers) for ASR.

2. Construction of Speech Corpora

The procedure of creating a speech corpus is fundamentally independent of lan-
guages. Taking the case of ASR as an example, it typically requires four steps:
design, recording, transcription, and inspection. With a read aloud speaking style,
transcription is basically unnecessary. This is often the case for TTS.

Design: The process of determining the specifications such as the overall size,
domain, speaking style, the speaker and dialect conditions, background noise,
recording device and digitizing format, etc. The designing of inspection methods
should not be forgotten. It is better to consider the consistency with the translation
component in determining the domain. If the output of the recognition component
contains an unknown word for the translation component, the translation will fail.
Using a part of the text corpora employed to train the translation component as the
manuscript of speech corpus is a promising solution, especially when the amount of
collectable speech is limited.

Recording: The process of collecting utterances from native speakers. When the
speaking style is spontaneous, ideas for drawing out a great variety of speech within
the limited time are essential. For example, prompting interactive dialogues under
preset scenes such as shopping etc., or prompting the speakers to answer prede-
termined questions, and so on.

Transcription: The process of transcribing the recorded utterances. This step is
usually most time-consuming. Even expert transcribers typically take more than ten
times than the actual time (playback time) to transcribe regular-speed spontaneous
utterances.

Inspection: The process of checking and correcting the corpus. This step must
not be skipped as errors inevitably occur in human-related performance, i.e.,
reading/speaking, hearing, and writing. Defects directly lead to the deterioration of
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the recognition performance. The inspection process can be divided into automatic
and manual ones.

The construction of speech corpora prominently takes the highest human and
temporal costs among all processes of multilingualization in statistical speech
processing technology, which is presently the mainstream. However, the cost can
be dramatically reduced once a prototypical ASR system of the target language is
developed, even if it were a very primitive one. For example, distributing a pro-
totype system as an (free) application to native speakers for trial use, and collecting
the users’ utterances, may substitute the recording step; the users’ consents are
indeed necessary. The transcription step can be done based on the recognition
results of the prototype system, which is probably more efficient than transcribing
them from scratch. As for the inspection step, the prototype system can be used to
automatically estimate whether a given manual transcription requires a careful
inspection. If the manual transcription of an utterance largely disagrees with the
ASR result of the same utterance, the transcription is assumed to contain errors.

3. Participation of Native Speakers

As mentioned above and in the remaining part, the framework and procedures of
speech processing are basically common regardless of languages. Therefore, the
multilingualization task does not require native speakers of the target language on a
constant basis, except for corpus speakers and transcribers. However, there are also
a few other aspects that definitely require the native speakers’ participation, as listed
below.

In constructing a speech corpus, it is strongly required for a native speaker who
is aware of the corpus specifications to attend the recording as the director or the
director’s advisor. This prevents the recording from continuing with under-qualified
utterances by checking the naturalness and acceptability as well as the correctness
of the speech contents on site. The participation of native speakers is also indis-
pensable in the inspection step; non-native speakers are not capable of judging the
eligibility of an utterance or transcription based on subtle information such as
accentedness and the fluctuation of spelling.

Apart from the construction of speech corpora, a native speaker’s advice is
essential for the development of automatic text processors such as word segmenter,
G2P, and text normalizer, which are utilized to improve the efficiency of
post-processing of the corpora introduced in the following sections. For example,
even in a language whose orthography specifies a word boundary, it is not always
optimal to use apparent words—separated by orthographical word delimiters—as
the unit in word segmentation. Such problems can be fundamentally solved only by
close, preferably, face-to-face communications between non-native developers and
native speakers.

Once an appropriate speech corpus is constructed through the above procedures,
grab useful tools such as word segmenter and G2P, and you are ready to step into
the following Sects. 1.2 (ASR) and 1.3 (TTS), which will further guide you toward
the multilingualization of speech processing.
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1.2 Multilingualization of Speech Recognition

The automatic conversion from speech to text is called “automatic speech recog-
nition (ASR).” ASR however, is not a uni-directional process from sounds to
letters, but rather bi-directional. It estimates from the acoustic features of an input
sound to determine which of the phonemes in a certain language it corresponds to,
while also estimating from text information to determine which words of the lan-
guage the string of sounds is most likely to match with. The statistical model used
in the former process is called the acoustic model and the one used in the latter is
called the language model. Both are language-specific, and therefore must be
constructed for each language. This section first explains the basic framework of
ASR, and then outlines the multilingualization process of the acoustic model and
language model, respectively.

1.2.1 Basic Framework of Speech Recognition

In general, as shown in Fig. 1.1, speech recognition is performed using an acoustic
model which associates acoustic feature sequences with phoneme sequences, and a
language model which associates phoneme sequences with word sequences, and by
converting speech into a sentence (word sequences) via a matching process called
decoding. In the process, the decoder derives the most suitable word sequence by
weighing various phoneme sequence candidates from the acoustic model and word
sequence candidates from the language model, based on language-independent
common searching procedures as further explained in Sects. 1.2.2 and 1.2.3. The
acoustic and language models that the decoder refers to are language dependent.
However, as explained in the following sections, the fundamental structure of both
models is rather common among different languages, and therefore speech recog-
nition for various languages can use a common framework.

Fig. 1.1 Framework of ASR
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1.2.2 Multilingualization of Acoustic Models

1. Acoustic Model

The framework of acoustic models is universal across languages as its primary
function is to associate acoustic feature sequences with phoneme sequences. As
described in the previous section, the acoustic features are typically short-time
physical features of speech that approximate the major elements of sound in which
humans identify speech. They include not only static features but also dynamic
ones, i.e., the degree of temporal changes. Regardless of language, the absolute
values of these features, their fluctuation ranges and rates each falls within a certain
range because they are all ruled by the physical and physiological constraints of
human speech organs. Therefore, a common language-independent methodology
can be applied when extracting and processing acoustic features.

Phonemes are minimum speech units that can be distinguished linguistically, as
also mentioned in the previous section, and therefore need to be defined for each
language. However, the framework of acoustic modeling can be common. The
instantaneous or static property of a phoneme is modeled based on the combina-
tions of short-time acoustic features. On the other hand, modeling along the tem-
poral dimension requires a little ingenuity because phonemes inherently have a high
degree of freedom in time. First, the temporal variability among different phonemes:
phonemes show a wide variety of intrinsic durations mainly according to the
manner of articulation. Sustainable phonemes such as vowels, fricatives, nasals, and
trills require a certain amount of time to emit a sufficient amount of acoustic energy
that activates the human audition into atmosphere and naturally comprise the longer
group, while the shorter group consists of those characterized by rapid motions such
as flaps and plosives (excluding pre-plosive closure parts). Second, the temporal
elasticity within a phoneme: the duration of the same phoneme can greatly change
by various extrinsic factors such as the difference in speakers, speaking rate and
style, as well as contextual differences as shown in Table 3.1. The influence on
sustainable phonemes are in particular significant. Third, the temporal ambiguity of
boundaries of a phoneme: the transition of acoustic features between one phoneme
and the adjacent phoneme or the silent part (pause) is not discrete but continuous,
because the human speech organ can-not change its position or shape instanta-
neously. Thus, it is inevitable that there will be an “in-between” section during the
transition from phoneme X to Y that cannot be identified as either phonemes from
its static features.

For these reasons, as shown in Fig. 1.2, models that allow temporal ambiguity
are considered in associating the acoustic feature sequences with phoneme
sequences. Specifically, dynamic programming (DP) modeling and hidden Markov
model (HMM) are widely used as they can associate the two time series data sets
with each other by giving flexibility to the time axis. In particular, HMM is a
probabilistic model that allows multiple candidates (e.g., both phonemes X and Y)
for the observed acoustic feature, and therefore has a good compatibility with the
ambiguous or transitional nature of speech properties mentioned above. This is one

10 H. Kato et al.



reason why HMMs are still being utilized even with the latest advance in machine
learning techniques, namely Deep Learning.

However, as a counter effect of ensuring temporal flexibility, the HMM has a
disadvantage in the usage of certain kinds of temporal information such as phone
durations or rhythms distributed over a relatively wide range of input speech. One
of the promising approaches to overcome such disadvantage is end-to-end con-
nectionist temporal classification (CTC) modeling. This allows us to handle global
features leading to a higher precision as detailed later in Sect. 2.3.3.

2. Context-Dependent Phones3

The use of context-dependent phones enables us to create a highly accurate acoustic
model regardless of languages. In the model, a phone is defined differently
according to its surrounding phones. The most popular variation is called the tri-
phone model where three consecutive phones are defined as a single unit. For
example, the same phone P can be defined in six different ways if it is pronounced
immediately after two other phones (a and b) and immediately before three other
phones (x, y, and z), they are: a – P + x, a – P + y, a – P + x, b – P + x,
b – P + y, and b – P + z (see Fig. 1.3). In theory, a language possessing 50 phones
counts a total of 50 � 50 � 50 = 125,000 triphones; however, the actual number is

Fig. 1.2 Time sequence matching process of speech feature values and phonemes

3The term “phone” is occasionally used instead of “phoneme” when any variant of linguistic
phonemes, e.g., allophone, is implied.
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usually much smaller than theory dictates—thanks to the phonotactic rules, i.e.,
language-specific restrictions on what phonemes can exist next to one another.

Context-dependent phones are effective because the acoustic features of a phone
are greatly influenced by its preceding and succeeding phones. For example, the
movement of the mouth to pronounce a phone varies depending on whether the
preceding phone requires the mouth to open wide or not. Any difference in the
movement of a speech organ would obviously make a difference in the acoustic
features. Therefore, context-dependent phones can provide highly accurate models
which cover different varieties of acoustic features due to the context-dependent
phonetic coarticulation effects. Note, however, that a large amount of speech data is
required to train a large number of phones in this manner. The improvement in ASR
accuracy due to the increase of training data is more remarkable with models using
deep neural networks (DNNs) than the conventional Gaussian Mixture Model, as
the former can handle many-to-many relationships with high precision.

Context-dependent phone modeling not only covers the differences in the order
of phones, but also models reductions of articulations as well as unclear utterances.
In actual speech, unless done by a professional narrator, it is difficult to clearly utter
each and every phone. It is usually the case where one would not have to pronounce
each phone clearly to convey his/her message. When exactly will a speech be
obscure? It is likely to happen in parts where the intended meaning of an utterance
can be linguistically understood without clear articulation and/or in parts that are
difficult to articulate. Also, if the listener is native to the language, he/she is
accustomed to such unclear or reduced utterances. For example, “lot of” is gen-
erally defined as “l ɒ t ə v” in a phone sequence, but the actual speech is likely to be
uttered as “l ɒ ɾ ə”. As for the reductions of articulations in frequently-used word
sequences such as “want to” and “wanna,” the latter has become so popular that it is
recognized as a different word sequence or a different term by itself. In this way,
one does not always pronounce a word with the proper phones which makes it

Fig. 1.3 Examples of context-dependent phones. <s> denotes a silent part
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difficult to associate simple phones with speech. On the other hand,
context-dependent phones can be easily matched with actual speech since they are
defined depending on the preceding and succeeding phones including their ten-
dencies of becoming unclear. Moreover, since these events are common with all
languages, using context-dependent phones would allow speech to be recognized
with higher accuracy independent of languages.

It can be said however, that context-dependent phones only consider the
neighboring phones and it is difficult to cover the change or reductions of articu-
lations due to a specific word, and especially due to speech features accompanied
by large replacements or omissions as seen in spontaneous speech. Therefore, if
more detailed phones can be defined in consideration of wider phone alignment,
linguistic frequency, and connection between words, a more accurate speech
recognition can be realized.

3. Multilingualization

The primary task in the multilingualization of acoustic models is to clearly define
the phoneme system of the target language. As mentioned earlier, acoustic models
can be respectively modeled according to each phoneme of the target language;
however, clear phoneme definitions may not always exist for some languages. Even
if a phoneme definition exists, it cannot be verified without knowing the phoneme
sequence of the word. Therefore, clarification of the phoneme system is an essential
condition in realizing multilingualization of acoustic models, so that pronunciations
of all of the words can be defined by phoneme sequences. It is needless to say that
some kind of speech corpus (see Sect. 1.1.2) of the target language is necessary to
train acoustic models, in addition to an appropriate phoneme system.

1.2.3 Multilingualization of Language Models

A language model is a model for estimating the occurrence probability of a word
sequence to a given arbitrary word sequence. The general method is called a
statistical language model which performs probability estimation by statistical
processing, and the most widely used is the n-gram language model. The n-gram
(n = 3 or n = 4 is often used) language model is a model in which the probability
P w1w2. . .wnð Þ of a word wn that comes after a word sequence w1w2. . .wn�1 is
calculated, given the conditional probability of the immediately preceding n-1
word, and can be formulated as follows:

P w1w2. . .wnð Þ ¼
Yn

i¼1

Pðwijwi�nþ 1. . .wi�2wi�1Þ ð1:1Þ

This probability P w1w2. . .wnð Þ is obtained from a large amount of text called
(training) corpus, such as collections of example sentences, newspaper articles,
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Web pages, and transcriptions of speech data. Therefore, the probability of an
n-gram which does not appear in the corpus is 0. In order to avoid this, smoothing is
performed to apply a certain probability value to such n-gram. Among some of the
smoothing methods such as linear interpolation and maximum entropy method,
estimating occurrence probabilities from a lower-order n-grams called back-off
smoothing is most widely known. For example, a language model with n = 3,
where 3-gram does not appear in the corpus, the occurrence probability of the
3-gram is obtained using that of the lower order (n = 2). In addition, proper nouns
such as names of people and companies, cannot achieve high frequency levels from
the corpus. In such cases, words can be classified into those with similarities in
occurrence tendencies or attributes and a class-based language model—which
learns n-grams by class units—can be used. Also, using linear interpolation or the
like, a mixture of multiple language models—respectively created from different
training corpora with similar topics or writing styles—can be useful. Then, using
linear interpolation or the like, the multiple models that have been created are mixed
to create one mixture model to be applied for proper nouns. However, these models
only estimate the output from the information of history length n, and with lan-
guages such as Japanese where a sentence can be very long, and the subject and
predicate can be distant from each other, estimation based on topics and utterance
styles is challenging. In recent years however, methods using neural networks have
been proposed to overcome such challenges and are being put to practical use. For
example, recurrent neural network (RNN)—one method of neural networks—hands
encoded information of a word history longer than n to the middle layer and feeds
back the output to the input of the next intermediate layer enabling outputs to be
generated with longer word history taken into account, and has been reported that
higher performance can be achieved than the conventional n-gram language
models. However, since the smoothing of low-frequency words can be performed
more effectively with the n-gram model, neural network-based and n-gram models
are sometimes linearly interpolated.

1. Procedural Steps for Creating a Language Model

The language model is created in the procedure depicted in Fig. 1.4.

(a) Preparing a Training Corpus

Prepare a large amount of digitized text (hereinafter referred to as training corpus)
written in the recognition target language. The training corpus should preferably be
texts from the same task or domain as the target.

Collection of 
corpus

Text 
formatting

Word  
segmentation

Vocabulary  
definition Building LM

Building 
pronunciation  

dictionary

Fig. 1.4 Framework and procedural steps for creating language models
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(b) Text Formatting

Delete characters and symbols from the training corpus that are unnecessary for
creating the language model. For instance, symbols such as tabs and parentheses
which are not uttered in actual conversations should be removed. Arabic numerals
should also be spelled out in text to solve the ambiguity on how to read them.
Furthermore, when assuming speech input in a sentence-by-sentence manner, the
corpus should be divided into sentences.

(c) Word Segmentation

Divide the formatted text into word units. It should be noted however, that in some
languages, the pronunciation of numerals (when reading whole numbers) and
numeral classifiers may change according to the preceding and/or succeeding words
following the sandhi rules. In such case, the word unit is corrected in the
post-process of word segmentation. For example, in Japanese, “s a ng b y a k u (三
百, or three hundred)” or “i q p o ng (一本, or one, with a numeral classifier which
is generally used when counting long objects such as pencils or trees, etc.)” can be
divided into “三/百 (three/hundred)” and “一/本 (one/-),” but the pronunciation is
different when read together than when read individually, and therefore the word
unit must be modified. (Figure 1.5) Any inconsistencies in writing or expressions
should also be aligned. For example, variations in letter casing and in abbreviations
of the alphabet are recognized as different words in n-gram, as they have the same
meaning, are read the same way, but with different spellings. This may lead to a
decline in vocabulary coverage and the variance of probability and therefore should
be normalized.

(d) Creating a Word List

Create a word list using the word segmentation results. When using large-sized
training corpora with large vocabularies, it is common to cut off low-frequency
words and determine the vocabulary of the recognition system using only
high-frequency words.

Fig. 1.5 Correction examples of word segmentation results

1 Multilingualization of Speech Processing 15



(e) Creating a Language Model

Create a statistical language model using the above-mentioned high-frequency
vocabulary. In recent years, various language modeling tools that facilitate
smoothing and model mixing functions such as SRILM (The SRI Language
Modeling Toolkit)4 have been released, and the use of such tools can make lan-
guage modeling easier.

(f) Creating a Pronunciation Dictionary

Create a dictionary for speech recognition (hereinafter referred to as pronunciation
dictionary), which consists of the word list and their pronunciations. In the dic-
tionary, words are typically presented in an orthographic form and pronunciations
are presented by phoneme sequences (Fig. 1.6, left and right columns, respec-
tively). A pronunciation dictionary should contain all words to be recognized and
all possible pronunciation variations for each of the words, as any “missing” word
or pronunciation will be misrecognized. Therefore, it is highly desirable that a
pronunciation dictionary is manually created with meticulous care. However, it is
not realistic to comprehensively edit the whole dictionary by hand in
large-vocabulary systems with several tens or hundreds of thousands of words,
which have become common in recent years. A popular solution is to combine
automatically-generated grapheme-to-phoneme (G2P) results with the existing
manually-created pronunciation dictionary.

2. Multilingualization

The framework and procedures of language modeling are common regardless of
languages. Also, preparing a training corpus is language independent. In addition,
once the unit used for recognition is determined by word segmentation, word lists
and language models can be created—independent of languages—by treating each
word as a symbol. On the other hand, text formatting, word segmentation, and

Fig. 1.6 Example of a pronunciation dictionary

4http://www.speech.sri.com/projects/srilm/.
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creating pronunciation dictionaries require tuning in accordance with the charac-
teristics of each language.

(a) Text Formatting

Symbols such as tabs and parentheses are to be deleted uniformly regardless of
languages. On the other hand, pronunciations of numerals differ by language, and
therefore must be tuned individually. For example, how to read numbers may vary
among languages, regions, and types of numbers—whether they are expressing
dates, money, addresses, phone numbers, whether they should be read digit by digit
or as whole numbers, or whether they are cardinal or ordinal numbers. The order of
numbers and symbols used together with numbers also vary by language. For
example, commas (,) are used to separate digits in English and Japanese, whereas
periods (.) are used in German and Spanish, and spaces are inserted in French. In
the United States, dates are expressed as “MM-DD-YYYY,” with hyphens or
slashes, whereas in Japan, it would be “YYYY/MM/DD,” and the United Kingdom
would use “DD/MM/YYYY,” more likely with slashes. Furthermore, the positions
of currency symbols—whether to place them in front or after the numbers—also
vary among countries (Table 1.2).

It is essential to consider these differences in formats, and different meanings of
numbers and symbols in each language and delete or convert them into words. Even
when dividing the corpus into sentences, extra care is required for the process
because the symbols used for punctuation are different depending on the language.
For example, in English, “,” are used as delimiters within a sentence and “.” are
used to separate multiple sentences, but in Japanese, “、” and “。” are used. Such
symbols do not exist in the Thai language, which makes it very difficult when
dividing them into sentences.

(b) Word Segmentation

Prepare a Word Segmenter for each language. Western languages (e.g., English,
French, etc.) whose words are separated by spaces, can easily be divided into word
units. Meanwhile, in many Asian languages such as Chinese and Japanese, words
are not separated by spaces and statistical methods such as the minimum cost
method, HMM, and conditional random field (CRF) are applied to divide the

Table 1.2 Numeric expressions by language/region

Country Value Date Currency

United States 1,234,567.89 12-31-01, 12/31/01 $1,234,567.89

Japan 1,234,567.89 2001/12/31 1,234,567

United Kingdom 1,234,567.89 31/12/01 1,234,567.89

Germany 1.234.567,89 2001-12-31, 31.12.01 1.234.567,89€
France 1 234 567,89 31/12/2001 1 234 567,89€
Italy 1.234.567,89 31/12/01 €1.234.567,89
Spain 1.234.567,89 31-12-01 1.234.567,89€
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sentences into words. When the vast majority of high-frequency words are par-
ticularly short—comprising only a few phonemes—longer segments such as
phrases can be used to prevent misrecognition of non-speech short noises as such
short words (insertion errors) or errors in dividing longer words into such short
words (segmentation errors). On the other hand, shorter segments such as syllables
are considered when n-gram cannot be trained sufficiently from the corpus due to
the wide variations in parts of words as observed in conjugational words.

(c) Creating a Pronunciation Dictionary

Since the characters used for each language and their pronunciations are different, it
is necessary to create a pronunciation dictionary for each language. The pronun-
ciation dictionary should be created by adding pronunciations to each vocabulary in
accordance with the phoneme definition mentioned above. Pronunciations can be
automatically generated with G2P by applying ruled-based or statistical methods for
languages with less numbers of characters such as English, whereas with languages
such as Japanese where there are more and with many different ways to read, it is
common to utilize a manually created dictionary.

1.3 Multilingualization of Speech Synthesis

The automatic conversion of text into speech is called “text-to-speech synthesis
(TTS).” The term “speech synthesis” is also used in this book interchangeably with
“TTS” although “speech synthesis” has a broader meaning to be precise. TTS can
be seen as an inverse process of ASR. While it relies on the same types of tech-
niques as ASR in various phases, there are some technical differences between
them. Contrasting these two technologies, this section will provide a brief outline of
the basic framework of TTS and its multilingualization process.

1.3.1 Basic Framework of Text-to-Speech Synthesis

As shown in Fig. 1.7, a typical TTS system consists of two main processes. The
first, which is often referred to as “text analysis,” undertakes a linguistic analysis of
an input text and outputs an intermediate representation that contains information
on how to pronounce the text when it is spoken. A full account of this represen-
tation will be given later in Chap. 3. Subsequently, according to the output, the
second process generates a speech signal. The generation involves probabilistic
“acoustic models” in almost all recent TTS systems based on a statistical method,
which the remainder of this section will focus on.
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1.3.2 Text Analysis

The process of text analysis has some steps in common with that of building
language models for ASR (see Sect. 1.2)—text formatting (referred to as “text
normalization” in speech synthesis), word segmentation, and grapheme-to-phoneme
conversion (relying on a simple dictionary lookup or spelling-based prediction
depending on the target language). In addition to these, POS tagging is often
incorporated in the analysis process, and for some languages serves as part of the
word segmentation process. It should be noted that the whole text analysis process
must be executed at runtime in real-time operation for TTS. All the information
obtained in the linguistic analysis process is integrated into the intermediate rep-
resentation, i.e., the output of the text analysis process.

Text analysis needs to be developed depending on the linguistic properties of
each individual language. Some of the steps above are clearly language-specific
while others can be used commonly among several languages. Text normalization
is principally language- or region-specific as in the case of building language
models for ASR. Word segmentation (or morphological analysis) is essential in
processing languages whose written text has no word delimiters (e.g., Japanese and
Chinese). Some of the sophisticated algorithms for the process are universally
applicable to such languages. Grapheme-to-phoneme conversion can be quite
straightforward for some languages with phonographic writing systems (e.g.,
Vietnamese and Spanish), whereas the conversion must fully rely on the pronun-
ciation dictionaries for languages with logographic writing systems (e.g., Chinese).
Apart from these steps, the intermediate representation includes information that is
obviously language-dependent, such as phonemes and lexical accents, and hence
needs to be designed specifically for each language (see Chap. 3 for details).

Fig. 1.7 Basic framework of text-to-speech synthesis
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1.3.3 Speech Signal Generation

Upon receiving the intermediate representation, the second process synthesizes
speech based on the acoustic models. The basic framework of the acoustic models
used in TTS is almost the same as those used in ASR. They are generative models
such as HMMs and a DNN, which have been trained in advance with a speech
corpus (or training data), independent of the TTS runtime (i.e., offline). A detailed
description of the acoustic models used for TTS is beyond the scope of this chapter
and can be found in Chap. 3.

The main tasks for the multilingualization process of speech signal generation
include: (1) creating a speech corpus of a new language, which further involves
(2) recording a certain amount of human speech in that language, and (3) training of
the models using the speech corpus. This is clearly because, as in the case of ASR,
the speech corpus itself and acoustic models retrieved from the corpus are fully
language-dependent while the generation process itself (i.e., the algorithm) is
mostly language-independent.

Reference

1. Handbook of the International Phonetic Association: A Guide to the Use of the International
Phonetic Alphabet. Cambridge University Press (1999)
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Chapter 2
Automatic Speech Recognition

Xugang Lu, Sheng Li, and Masakiyo Fujimoto

Abstract The main task of automatic speech recognition (ASR) is to convert voice
signals to text transcriptions. It is one of the most important research fields in
natural language processing (NLP). With more than a half century of endeavor, the
word error rate (WER), which is a metric unit for transcription performance, has
significantly been reduced. Particularly in recent years, due to the increase of
computational power, large quantity of collected data, and efficient neural learning
algorithms, the dominant power of deep learning technology further enhanced the
performance of ASR systems to a practical level. However, there are still many
issues that need to be further investigated for these systems to be adapted to a wide
range of applications. In this chapter, we will introduce the main stream and
pipeline of ASR frameworks, particularly the two dominant frameworks, i.e.,
Hidden Markov Model (HMM) with Gaussian Mixture model (GMM)-based ASR
which dominated the field in the early decades, and deep learning model-based
ASR which dominates the techniques used now. In addition, noisy robustness,
which is one of the most important challenges for ASR in real applications, will
also be introduced.
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2.1 Background of Automatic Speech Recognition

Automatic speech recognition (ASR) is a technology which converts voice into text
transcriptions and is one of the core techniques in man-to-machine communica-
tions. In recent years, several applications have extensively used ASR-related
speech technologies for information access and speech-to-speech translation ser-
vices. To name a few, Apple’s speech assistant Siri, Amazon’s home management
service Alexa/Echo, Google’s smart search and service assistant Google Home,
Microsoft’s personal assistant Cortana, and NICT’s speech translation system
VoiceTra.1 In most of these applications, ASR-related speech communication
serves as an efficient and smart interface, and the performance of ASR is essential to
the applicability of these services.

The tasks and application scenarios for ASR have changed over the years from
simple to complex conditions, for example, from small to large-sized vocabulary,
from speaker-dependent to speaker-independent, from read speech to spontaneous
speech, and from quiet office rooms to noisy environments. In order to improve the
performance of ASR systems in various conditions, techniques have evolved and
advanced significantly during the last several decades. For example, simple tem-
plate matching-based (e.g., dynamic time warping) techniques were developed in
the early 1950s to 70s, the popular hidden Markov model (HMM)-based statistic
learning techniques were adopted in the 80s to 90s, and the dominant deep learning
techniques were invented in recent years. With more than a half-century endeavor,
it was only until recently that the ASR technology could see the promising harvests
in real applications. The significant improvement in the Word Error Rate
(WER) reduction of ASR systems has increased the applicability of the applica-
tions. For example, as reported by Microsoft, the WER of 5.1% in ASR achieved
with the latest deep learning techniques even outperforms that of human beings
(5.9%) on the Switchboard evaluation data corpus [1].

We must admit however, that there is still a long way to go for research and
development of ASR to enable speech techniques to be applied in other situations.
For instance, in noisy environments, far-field speech, as well as freestyle speech,
the ASR performance is still far from applicable while those conditions are likely to
be observed in real situations. In addition, how to utilize long context information to
improve the ASR accuracy and understand the meaning are some of the challenges
that we face. Knowledge from various disciplines, e.g., human speech perception,
linguistics, computer sciences, statistics, are necessary to advance the methods and
algorithms to deal with the complex application scenarios.

1http://voicetra.nict.go.jp/en/.
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2.2 Theoretical Framework and Classical Methods

2.2.1 Statistical Framework of ASR

The ASR task can be explained as a mapping task of a spoken audio sequence to a
word sequence. Under the statistical framework, the problem can be formulated by
maximizing the posterior probability of a word sequence when observing an
acoustic sequence:

W� ¼ argmax
W

P W jXð Þ ð2:1Þ

where X ¼ x1; x2; . . .; xT½ � is a given observation acoustic sequence, W ¼
w1;w2; . . .;wN½ � is a predicted word sequence. With the Bayesian theory, Eq. (2.1)
can be further formulated as:

W� ¼ argmax
W

P XjWð ÞP Wð Þ
P Xð Þ / argmax

W
P XjWð ÞP Wð Þ ð2:2Þ

where P XjWð Þ is regarded as the acoustic model, i.e., given a word sequence, the
probability of producing the observed acoustic sequence; P Wð Þ is the language
model, i.e., the probability of observing the word sequence. The language and
acoustic models are trained independently in most conventional algorithms.

Directly optimizing on Eq. (2.2) is a difficult task, but with a divide-and-conquer
strategy by taking the hierarchical structure of speech, Eq. (2.2) can be further
formulated as:

W� � argmax
W

X

L

P XjLð ÞP LjWð ÞP Wð Þ ð2:3Þ

where P LjWð Þ is the pronunciation model, i.e., given a word sequence W , the
probability of generating a pronunciation sequence L ¼ l1; l2; . . .; lM½ � with a set of
basic acoustic units (e.g., phonemes). P XjLð Þ is a generative model, i.e., given the
pronunciation acoustic sequence L, the likelihood probability of generating the
observed acoustic sequence X. This generative model can be further formulated
with a summation of hidden (or latent) state variables as:

W� � argmax
W

X

L

P XjSð ÞP SjLð ÞP LjWð ÞP Wð Þ ð2:4Þ

where S ¼ s1; s2; . . .; sT½ � is the hidden state sequence, and P XjSð Þ is the likelihood
of acoustic observation sequence conditioned on the hidden state sequence.

Most of the conventional algorithms are based on Eq. (2.4). As seen in Eq. (2.4),
it involves a complex computation process for sequential probability estimation. In
real implementations, the basic formulations are often approximated or simplified
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with assumptions or constraints. The most famous solution is the HMM with
Gaussian mixture model (GMM)-based approximation (HMM/GMM) framework,
i.e., the hidden state sequence probability can be approximated by Markov chain
assumptions, while the output probability for each hidden state is approximated
using a GMM.

2.2.2 Classical Pipelines for ASR

Under the Bayesian formulation of the HMM/GMM framework as introduced in
Sect. 2.2.1, the conventional ASR system is composed of a cascade of several
components as illustrated in Fig. 2.1. In this figure, if the components inside the
dotted square is modeled and trained as a single model, it will be the end-to-end
framework, i.e., directly mapping from acoustic sequence to word sequence (further
details will be provided in Sect. 2.3.3).

The components inside the dotted square show the cascade of the hierarchical
modeling components of speech recognition which are used in traditional HMM/
GMM. The information processing pipelines are as follows:

Fig. 2.1 Cascade of pipelines for speech recognition model. FE: Feature extraction, ACM:
Acoustic classification model, HSSM: Hidden state sequence model, PM: Pronunciation model,
LM: Language model
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1. Acoustic speech is encoded as feature vectors with a feature extraction
(FE) module which is a deterministic module, e.g., Mel frequency Cepstral
Coefficient (MFCC). In end-to-end ASR framework, the processing can be
trained.

2. The acoustic classification model (ACM) (e.g., GMM) classifies the feature
vector to its hidden state category.

3. The hidden state sequence model (HSSM) is used to model the state transition
property of the discrete state labels.

4. The pronunciation model (PM) attempts to model the variations of lexicon
pronunciations, and conventionally it is a fixed (deterministic) pronunciation
lexicon as used in most ASR systems. In the end-to-end framework, this module
also can be trained.

5. The language model (LM) is used to model the word transition property by
taking into consideration of the word context history information, e.g., bi-gram
and tri-gram models.

In the five modules shown in Fig. 2.1, the ACM (with HSSM), PM, and LM are
optimized or trained independently in the conventional HMM/GMM framework. In
fact, they can also be jointly optimized. The end-to-end models in particular, are
jointly optimized into one framework, i.e., training efficient features with proper
pronunciations in utterances for ASR, simultaneously.

In correspondence with the cascade of modules, the recognition (decoding) is
also shown in Fig. 2.1. For the convenience of manipulation and extension, the
components or pipelines are efficiently described as a weighted finite-state trans-
ducer (WFST):

HCLG ¼ H � C � L � G ð2:5Þ

where G, L, C,H represent the word-level grammar, pronunciation lexicon, context
dependency of context dependent phonemes, and the HMM states, respectively;
and “�” is the composition operator. The ASR can be compactly formulated as a
composition of several transducers which maps an HMM-state sequence to a word
sequence, i.e., finding a solution in a searching space expanded by the decoding
graph HCLG [2].

2.3 Deep Learning for ASR

2.3.1 From HMM/GMM to HMM/DNN and Beyond

With the success of deep learning techniques in image processing and recognition,
the deep learning algorithms have been applied in ASR and showed dominant
effects in improving the performance [3]. Due to the increase in computational
power, data corpus, as well as efficient deep learning algorithms, it is safe to say that
there has been a paradigm shift from HMM/GMM to HMM/DNN in the ASR field
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in recent years. Figure 2.2 shows this paradigm shift. The left panel shows the
conventional framework of HMM/GMM in acoustic modeling. In the HMM/DNN
framework, for each state of the HMM, the GMM-based probability approximation
is replaced by a DNN-based estimation. In the conventional HMM/GMM, the input
to the GMM is a frame-based feature vector, while in the HMM/DNN, the input to
the DNN is a feature vector composed of a concatenation of several consecutive
frames. In addition, the input to the GMM usually is a dimension-decorrelated
vector (e.g., MFCC), while the input to the DNN does not need a decorrelated
representation (e.g., Mel frequency filter band spectrum). Aside from the condi-
tional probability estimation for each state, all other processes, e.g., HMM-based
state transition model, pronunciation model, and language model are kept the same.
Therefore, no big change has been made to the decoding process.

In the HMM, for each hidden state, the probability distribution for observing an
acoustic vector can be approximated with parametric models, e.g., GMM. In the
GMM, for a given hidden state st, the probability of generating an observation
acoustic vector xt can be calculated as:

p xtjstð Þ ¼
X

c

wc; stN xt; lc; st ;Rc; st

� � ð2:6Þ

where wc; st is the weight of the mixture with constraint as
P

c wc; st ¼ 1, c is the
number of GMMs, and N :ð Þ is the Gaussian function with mean vector and
covariance matrix lc; st and Rc; st , respectively. Equations (2.4) and (2.6) are the
fundamental bases of the famous HMM/GMM framework.

In order to use the DNN-based model for likelihood probability estimation in
GMM, based on the Bayesian theory, the likelihood probability can be formulated as:

Fig. 2.2 ASR paradigm shift from HMM/GMM to HMM/DNN
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p xtjstð Þ ¼ p stjxtð Þp xtð Þ
p stð Þ / p stjxtð Þ

p stð Þ ð2:7Þ

In the DNN framework, the posterior probability p stjxtð Þ can be directly esti-
mated based on the feed-forward transformation of DNN. The term p stð Þ is
regarded as a scale factor representing the state prior probability. From Eq. (2.7),
we can see that the likelihood score can be estimated from the output of a DNN
model with a normalization or scale factor [3]. This is the main difference in the
frameworks between the HMM/GMM and HMM/DNN.

Although it is assumed that with enough Gaussian kernels, the probability dis-
tribution can be accurately approximated by the GMMs, it is difficult for the model
to learn a large number of model parameters with good generalization for
high-dimensional feature vectors, while the DNN learning framework is good at
learning a large number of parameters to approximate the distribution efficiently
even with high dimensional feature vectors as inputs. This makes it possible to
concatenate several temporal frame windows to utilize the context information in
feature representation. In addition, the DNN can approximate an arbitrary proba-
bility distribution function with higher accuracy than using GMMs without the
GMM assumption of the distribution shape. With these advantages, the DNN can
explore nonlinear and complex correlation information in a temporal context
window for feature extraction and optimize the feature representation and classi-
fication simultaneously.

In DNN modeling, the input window for catching temporal context information
is usually fixed, for example, 15 frames of Mel frequency band spectrum or MFCC
vectors are concatenated into one long vector to be used as the input. In order to
consider a longer or variable temporal window for context information extraction,
convolutional neural network (CNN) and recurrent neural network (RNN)-based
architectures for acoustic modeling have been proposed. Figure 2.3 shows the basic
processing architectures used in FNNs, CNNs, and RNNs. Figure 2.3a is a fully
connected feed-forward neural network (FNN), Fig. 2.3b is a convolutional net-
work (CNN) used in deep CNN where the neural weight connections are shared
between different convolutional windows, Fig. 2.3c is a recurrent neural network
(RNN) where the neural weight connections are shared between different time
steps. The CNN is capable of extracting temporal and/or frequency shift invariant
features. These invariant features that are related to speaker vocal tract normal-
ization and speaking rate normalization are expected to improve the robustness of
ASR. In addition, stacking the CNN layer-by-layer, can extend the width of the
input receptive field which catches the hierarchical structure of speech. In
CNN-based architecture, the variable temporal context information is obtained at a
different level of convolution processing. In order to explore long temporal context
information in one processing level for feature extraction and modeling, the RNN
architecture is a natural choice where the hidden layer output of the previous
process will be used as the input to the current hidden layer (as shown in Fig. 2.3c).
However, in model training with error backpropagation (BP) algorithm using
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gradient descent-based optimization, due to the recurrent structure in gradient
calculation for long temporal sequence, gradient vanishing or explosion problems
always occur which makes it difficult to train the RNN model in its original form.
With the long-short term memory (LSTM) [4] and gate recurrent unit (GRU) [5]
neural units in the RNN, the RNN can be efficiently trained. Rather than using a
single type of neural network structure, combination of different types of neural
architectures are proved to improve the performance which takes advantage of the
inherent structure of different architectures, for example, the CNN-LSTM-DNN
structure which was successfully applied to ASR [6].

2.3.2 From Shallow to Deep

The evolution of the neural network model has gone from shallow (e.g.,
single-layer perceptron and multi-layer perceptron) to deep (e.g., deep neural net-
work and very deep neural network).

Although the universal approximation theorem [7] of artificial neural networks
states that a shallow feed-forward network with a single hidden layer containing a
finite number of neurons can approximate any continuous functions, the models
widely used at present are mostly deep structured. The reasons are as follows:

1. The deep-stacked nonlinear functions can significantly reduce the requirement
of resources. According to the universal approximation theorem, a shallow
neural network with the same representation ability requires exponentially many
more neurons.

2. GPGPU makes training DNNs with backpropagation algorithm, highly efficient.

Since very deep networks [8] achieved impressive results in image processing
and other fields, deeper and deeper structures have been investigated. However,
training a very deep network model faces the challenges of gradient vanishing and
overfitting problems. For this reason, new architectures, e.g., highway connection
[9] and residual connection [10], have been designed to ease gradient-based training
of very deep networks. These two types of architectures are shown in Fig. 2.4.

Fig. 2.3 FNN: feed-forward neural network used in DNN (a), CNN: convolutional neural
network (b), RNN: recurrent neural network (c)
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In a normal feed-forward network, input x and output y of a single layer can be
expressed as:

y ¼ H x;WHð Þ ð2:8Þ

where H can be a nonlinear transformation in a hidden layer of neural network
model (e.g., DNN, CNN, or RNN). When training a model with BP algorithm, the
gradient signal will diminish or explode through a very deep stacking of the
nonlinearities.

Residual connection structure in Fig. 2.4a is the “þ x” term as formulated in
Eq. (2.9). This structure allows the gradient to pass backwards while skipping all of
the intermediate layers and directly reach the bottom layer without being dimin-
ished or exploded. With this structure, it is possible to train a stacked convolutional
residual network (also known as ResNet) with over 1000 layers.

y ¼ H x;WHð Þþ x ð2:9Þ

Highway connection structure in Fig. 2.4b has similar shortcuts as used in the
residual connection and further introduces two learnable gates (transform gate T
and carry gate C) to determine which extent each layer should be; a skip connection
or a nonlinear connection. The basic calculation unit is formulated as in Eq. (2.10).

y ¼ H x;WHð Þ � T x;WTð Þþ x � C x;Wcð Þ ð2:10Þ

By using these two types of network structures in deep modeling for ASR,
promising performances can be obtained.

Residual Connection (a) Highway Connection (b)

x x

x xWTWH WH WC

Fig. 2.4 The residual connection (a) and highway connection (b)
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2.3.3 End-to-End Framework Based
on Sequence-to-Sequence Learning

As mentioned in Sect. 2.2.2, in the conventional DNN-based ASR system, each
intermediate module is optimized independently. In the end-to-end ASR frame-
work, all intermediate modules can be jointly optimized. The concept of the
end-to-end ASR is shown in Fig. 2.5. Figure 2.5a is the conventional DNN-based
ASR. Figure 2.5b is the ideal end-to-end ASR system which directly maps an
acoustic speech sequence to a word sequence with a unified and jointly optimized
model. This does not require the intermediate modules as used in Fig. 2.5a. In
current real applications, a language model is still necessary as shown in Fig. 2.5c,
whether modeling with sub-word level units (e.g. phonemes or syllables), character
level units, or word level units.

There are two most widely-used methods to construct end-to-end ASR systems
in the current stage:

1. The Connectionist-Temporal-Classification (CTC) learning [11]

The CTC learning is always used together with bi-directional or uni-directional
LSTM (as shown in Fig. 2.6a) and the objective is to automatically learn the
end-to-end alignments between speech frames and their label sequence avoiding the
segmentation before training.

Fig. 2.5 Framework of the conventional DNN system (a), the ideal end-to-end system (b) and the
real applicable end-to-end system in current stage (c)
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As shown in Fig. 2.6b, “a a b / c c /” and “/ a / b b / c” are frame-level token
sequences of CTC network outputs. They are mapped into the same label sequence
“a b c”. The blank symbol (/) means no label output. They are inserted between
every two labels. The label sequence z is mapped to multiple CTC label paths
(denoted as Path zð Þ). A single path of frame-level CTC network output sequence is
denoted as p, the likelihood of z can be evaluated as the sum of the probabilities of
its corresponding CTC paths:

P zjXð Þ ¼
X

p2Path zð Þ
P pjXð Þ ð2:11Þ

where X is the acoustic sequence of a whole utterance, and p is a CTC path
corresponding to the label sequence z. By differentiating Eq. (2.11), we can
backpropagate training errors and update the network parameters based on a
forward-backward procedure [11].

2. The Encoder-Decoder structured neural networks [12]

As the name suggests, the typical Encoder-Decoder structure-based end-to-end
system (as shown in Fig. 2.7a) has two components: Encoder and Decoder. The
Encoder is a deep (uni-directional or bi-directional) RNN that encodes the speech

Fig. 2.6 The CTC-based end-to-end model (a) and CTC label paths (b)
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signal into a high-level representation, and the Decoder uses a multi-layer RNN to
convert the representation into word sequences.

Attention process can be applied to enhance the Encoder-Decoder
structure-based end-to-end system [13]. The framework is shown in Fig. 2.7b. In
the attention process, the final state of RNN is used as the information summa-
rization of the whole utterance (global representation), and then each frame of the
input is reweighted, thus the specific parts of the input can be “focused” on.

Decoding in the end-to-end ASR framework is investigated by many studies. So
far, the framework of WFST-based decoding is the most effective method. Based on
a constructed WFST graph, a beam search algorithm is applied to find the most
probable word sequence. Under the CTC-based framework, in the decoding graph,
a token FST T should be composed to the L � G FST. The blank symbols and
frame-wise token repetitions are removed by the token FST. Then the decoding is
performed upon the T � L � G graph by using the “interpolation-based method” [14]
or using the Maximum A Posteriori (MAP) decoding method [15] using the T �
S�1 � L � G decoding graph which composes a sub-word language model FST S�1

with other T , L, G FSTs. Since there are massive blank symbols detected during
decoding, the CTC-based decoding can be largely accelerated if the blank frames
are skipped and only the key frames are used for decoding.

2.4 Noise-Robust ASR in Real Applications

Although fundamental technologies of state-of-the-art ASR framework have been
continuously proposed as described in Sect. 2.3, various crucial problems, e.g.,
robustness against interference noises and reverberation, still remain as challenges

Fig. 2.7 The Encoder-Decoder structured without (a) and with attention mechanism (b)
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in realizing precise ASR in real environments. In real environments, the speech
signal uttered by a speaker may be seriously corrupted by interference noises. As
shown in Fig. 2.8, when the distance between the speaker and the microphone
increases, the speech is easily affected by interference noises with a decrease of the
signal-to-noise ratio (SNR) of the recorded speech. In addition, the influence of
reflected signals, i.e., that of reverberations become remarkable, and their charac-
teristics are highly fluctuated depending on the conditions of the recording envi-
ronment, for example, the size of the room, the material of the wall. Due to the
noise interference and reverberation as shown in Fig. 2.8, acoustic characteristics
between the speech signal uttered by the speaker and the observed signal (noisy
speech signal) corrupted by noises and reverberations are considerably mismatched.
To ensure the robustness of an ASR against noises and reverberations, it is nec-
essary to adequately reduce this acoustic mismatch.

2.4.1 Techniques of Noise-Robust ASR

There are two types of approaches in realizing a noise-robust ASR. One is front-end
processing, including noise reduction and de-reverberation which reduce interfer-
ence components of noises and reverberations from observed noisy speech signals,
and the other is the adaptation of the ACM to the observed environments.
Figure 2.9 depicts a classic pipeline architecture of a noise-robust ASR.

In Fig. 2.9, the first module denotes the front-end processing; noise reduction
and de-reverberation. In front-end processing, traditional noise reduction tech-
niques, spectral subtraction (SS) [16] and minimum mean-squared error short-time
spectral amplitude estimator (MMSE-STSA) [17] have been widely used. Based on
the recent deep learning framework, a mapping-based method using a deep
de-noising autoencoder (DAE) [18] has been proposed in the research area of

Fig. 2.8 Mixing process of noisy speech signal under the influence of noise and reverberation
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noise-robust ASR. As a de-reverberation technique, weighted prediction error
(WPE) [19] has indicated noticeable ASR improvements under reverberant con-
ditions. While the use of these front-end processing is the simplest way to ensure
the noise robustness of an ASR, they sometimes lead to serious performance
degradation due to speech distortion caused by estimation errors. This speech
distortion is remarkable in single-channel processing. In particular, the recent
DNN-based ACM is extremely sensitive to speech distortion. Therefore, to avoid
performance degradation of the ASR, it is necessary to carefully choose which
techniques to use for noise reduction and de-reverberation. As a solution to this
problem, distortionless frameworks have been proposed. Minimum variance dis-
tortionless response (MVDR) beamformer [20] that realizes distortionless noise
reduction using multiple microphones is widely used in such frameworks, and its
effectiveness has been clearly proven by various successful works.

On the other hand, various methods of ACM adaptation have also been pro-
posed. The most representative method of ACM adaptation is multi-condition
training. Multi-condition training is a method to learn ACM using training data
which consists of noisy speech data. In this method, when the types of noises and
SNRs of training data are increased, noise-robust characteristics of the ACM can be
improved. However, it is time consuming to train models using data sets combined
from various noise types and SNR conditions. Therefore, it is necessary to inves-
tigate appropriate types of noises and SNRs in multi-condition training. To cope
with unknown noise environments which are not included in training data, tech-
niques of ACM adaptation by using a small amount of environmentally matched
data have also been proposed [21]. In addition, noise-aware training [22] that
utilizes estimated noise statistics to incorporate noise awareness in ACM learning,
has also successfully improved the ASR performance in noise environments.
Another recent advanced technique is joint training which combines noise
reduction/separation and ACM adaptation with concatenation in a joint training
framework [23]. With this framework, it is possible to obtain the ACM which
incorporates noise reduction or separation function. Due to the flexibility of the
framework, any type of neural network-based noise reduction method, e.g.,
DNN-based binary masking [24], can be applied.

Fig. 2.9 Cascade of pipelines for noise-robust ASR
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2.4.2 Evaluation Frameworks of Noise-Robust ASR

Although the representative techniques of noise-robust ASR have been mentioned
in Sect. 2.4.1, these methods are often evaluated on different corpus and different
evaluation frameworks and therefore, it is difficult to compare the ASR performance
between various methods. To simplify the comparison between different methods,
some research projects attempt to carefully design noisy speech corpora, ASR tasks,
and evaluation criteria as a common evaluation framework.

The SPINE (ASR in noisy environment) project2 was launched around the year
2000. The corpora of SPINE project were designed as a military communication
task including the recognition of spontaneous spoken English dialogue between
operators and soldiers.

The AURORA project3 was also launched in the year 2000. The AURORA
project attempted to standardize front-end processing (feature extraction and noise
reduction) of ASR service through a mobile phone network, which is referred to as
Distributed Speech Recognition (DSR). The AURORA project aimed to develop an
advanced ASR front-end that can achieve sufficient ASR performance in real
environments. In the AURORA project, four types of corpora, AURORA2,
AURORA3, AURORA4, and AURORA5, have been published and distributed
through the European Language Resources Association (ELRA). Table 2.1 sum-
marizes the characteristics of each AURORA corpus.

The AURORA project came to an end in 2006. After the AURORA project, a
new evaluation project, the Computational Hearing in Multisource Environments
(CHiME) challenge4 has been launched since the year 2011. The CHiME challenge
differs from the AURORA project, mainly in (1) using multi-channel speech data,
and (2) using real recorded data. It focuses on ASR evaluation in daily environ-
ments. Table 2.2 summarizes the characteristics of each CHiME challenge.

The reverberant voice enhancement and recognition benchmark (REVERB)
challenge5 provided LVCSR tasks under various reverberant environments, which
includes a simulated task and a real recorded task. In the simulated task, six types of
reverberations and a noise were added to the WSJCAM0 corpus, and in the real
recorded task, the MC-WSJ-AV corpus, which was recorded under two types of
reverberation environments, were used for evaluation. Both the WSJCAM0 and the
MC-WSJ-AV corpora have been distributed from the Linguistic Data Consortium
(LDC). In both simulated and real recorded tasks, speech data was recorded by
using eight microphones. The evaluation tasks were divided into three tasks,
1-channel, 2-channels and 8-channels tasks according to the number of target

2SPINE: Speech in noisy environments, http://www.speech.sri.com/projects/spine/.
3Aurora speech recognition experimental framework, http://aurora.hsnr.de/index-2.html.
4Computational hearing in multisource environments (CHiME) challenge, http://spandh.dcs.shef.
ac.uk/projects/chime/.
5Reverberant voice enhancement and recognition benchmark (REVERB) challenge, https://
reverb2014.dereverberation.com/.
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microphones. The REVERB challenge provided not only ASR evaluation tasks, but
also evaluation tasks of processed speech quality by using subjective evaluations
based on multiple stimuli with hidden reference and anchor (MUSHRA) test and
objective evaluations with various evaluation criteria.

Mutual comparisons using common evaluation frameworks as described in this
section brought drastic advances in research on noise-robust ASR. In the AURORA
project, many noise reduction techniques and ACM adaptation have been proposed,
and research on noise-robust ASR was greatly accelerated. The CHiME challenge
and the REVERB challenge were launched at the time of an ASR paradigm shift
from HMM/GMM-based systems to HMM/DNN-based systems. In these chal-
lenges, researchers attempted to incorporate techniques that have been proposed for
the HMM/GMM-based systems in the AURORA project into HMM/DNN-based
systems. However, many of them failed and therefore, research on approaches
specifically suitable for HMM/DNN-based systems have since been active, such as
multi-channel processing, distortionless framework, and multi-condition training,

Table 2.1 Summary of the AURORA corpora

AURORA2 AURORA3 AURORA4 AURORA5

ASR task Continuous
digits

Continuous digits Continuous read
speech

Continuous
digits

Language English Dutch, Finnish,
German, Italian,
Spanish

English English

Vocabulary
size

11 digits 11 digits 5000 words 11 digits

Data
recording

Simulation Real recording Simulation Simulation

Noise
condition

Subway,
bubble, car,
exhibition,
restaurant,
street,
airport,
station

Car noises (Idling,
Low-speed,
High-speed)

Subway, bubble,
car, exhibition,
restaurant, street,
airport, Station

Car, airport,
train street,
office, living
room

Channel
condition or
microphone
type

2 telephone
bands

Close-talking
microphone,
hands-free
microphone

Close-talking
microphone,
desktop
microphone

Close-talking
microphone,
hands-free
microphone

Evaluation
track

Matched
noise track,
mismatched
noise track,
channel
mismatched
track

Well-matched track,
moderately-matched
track,
highly-mismatched
track

Clean track,
noisy track,
clean and
channel
mismatched
track, noisy and
channel
mismatched
track

Matched noise
and
reverberation
track,
mismatched
noise and
reverberation
track
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and have indicated sufficient performance for noise-robust ASR with the HMM/
DNN-based systems.

In the future, common evaluation frameworks which are required by real
application scenarios will definitely play a large role in accelerating the ASR
research to explore new ideas for real applications.
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Chapter 3
Text-to-Speech Synthesis

Yoshinori Shiga, Jinfu Ni, Kentaro Tachibana, and Takuma Okamoto

Abstract The recent progress of text-to-speech synthesis (TTS) technology has
allowed computers to read any written text aloud with voice that is artificial but
almost indistinguishable from real human speech. Such improvement in the quality
of synthetic speech has expanded the application of the TTS technology. This
chapter will explain the mechanism of a state-of-the-art TTS system after a brief
introduction to some conventional speech synthesis methods with their advantages
and weaknesses. The TTS system consists of two main components: text analysis
and speech signal generation, both of which will be detailed in individual sections.
The text analysis section will describe what kinds of linguistic features need to be
extracted from text, and then present one of the latest studies at NICT from the
forefront of TTS research. In this study, linguistic features are automatically
extracted from plain text by applying an advanced deep learning technique. The
later sections will detail a state-of-the-art speech signal generation using deep neural
networks, and then introduce a pioneering study that has lately been conducted at
NICT, where leading-edge deep neural networks that directly generate speech
waveforms are combined with subband decomposition signal processing to enable
rapid generation of human-sounding high-quality speech.
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3.1 Background

Text-to-speech synthesis (TTS) is a technology of converting written text into
speech. In some parts of this book, it is simply referred to as “speech synthesis”
without explicitly indicating what the input is. Notice that the broader definition of
the term includes some of the technically simpler processes such as
recording-reproduction, where pre-recorded voices are simply played back on
demand. In contrast to such straightforward processes, TTS requires a much more
elaborate mechanism with more advanced techniques to enable computers to read
aloud any arbitrary sentence. The recent extensive improvement in synthetic speech
quality has brought TTS into wider application areas. A large number of
TTS-related products have already appeared on the market, e.g., speech-operated
car navigation systems, home assistant devices (so-called “AI speakers”) and
speech-to-speech translators. The TTS technology is also utilized in almost every
ASR-related product presented in Sect. 2.1 for their speech output.

TTS has a long history dating back to the late 1960s. The first practical and
commercially-successful TTS system was based on formant speech synthesis [1].
Formant speech synthesis approximates the speech spectrum with several spectral
peaks called “formants,” which play an important role in human speech perception.
The formant-based TTS systems, however, generated speech with many artifacts,
which was mainly due to the insufficient accuracy in approximating the detailed
speech spectrum. This drawback was overcome later in the late 1980s by con-
catenative speech synthesis, where synthetic speech was generated by concatenat-
ing small fragments of speech. In the early years, concatenative methods adopted
speech fragments which were represented by certain acoustic parameters (e.g., the
cepstrum) since such parameterization facilitated modifying the fundamental fre-
quency (fo) of a speech. Also, rather small speech units such as diphones were used
[2]. However, due to the persistent difficulty in reducing artifacts caused by pro-
sodic modification and spectral interpolation at unit joins, much attention was given
to a new type of concatenative synthesis called “unit selection” [3] in the late 1990s.
Unit selection speech synthesis is based on a methodology that every synthesis unit
of multiple inventory is retrieved selectively from a large-scale speech corpus based
on given cost functions, and concatenated with the minimum amount of signal
processing. This method produces speech with fewer artifacts when a sufficiently
large corpus is available. However, unit selection lacks flexibility in producing
various types of timbres or speaking styles since the voice identity of its synthetic
speech is greatly dependent upon that of the speech corpus.

Speech synthesis based on hidden Markov models (HMMs) [4], which has been
studied since the mid-1990s, has a great deal of flexibility in contrast. In the
HMM-based method, the time-varying spectrum and fundamental frequency of
speech, as well as the duration of speech segments are modeled simultaneously
within the framework of hidden semi-Markov models (HSMMs) [5]. The proba-
bilistic models are trained statistically with a speech corpus in advance and used to
synthesize speech waveforms based on the maximum likelihood criterion. Today,
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such types of speech synthesis based on the statistical training of stochastic gen-
erative models are, in general, called “statistical parametric speech synthesis
(SPSS).” One of the latest, hottest topics in this field is undoubtedly the introduction
of deep learning to the framework of TTS, a detailed explanation of which will
appear later in Sects. 3.2 and 3.3.

Figure 3.1 shows a block diagram of a typical SPSS-based TTS system. The
system is divided into two main components: text analysis and speech signal
generation. As already noted in Sect. 1.3, the text analysis component carries out a
linguistic analysis of input text and generates a sequence of phonemes with lin-
guistic context information, which is technically called “context-dependent pho-
neme labels.” In accordance with the sequence of phoneme labels, the speech signal
generation component first produces the acoustic features of a target speech and
subsequently converts those acoustic features into a speech waveform as an ulti-
mate output of the TTS system.

3.2 Text Analysis for TTS

3.2.1 From Text to an Intermediate Representation

The text analysis component consists of several processes: text normalization, word
segmentation, part-of-speech tagging, syntactic dependency analysis, pause pre-
diction, and grapheme-to-phoneme conversion (G2P). As the name implies, the text
normalization process normalizes the input text into an appropriate form depending
on the context. Typically, numeric expressions (whether “1990” should be trans-
formed as “a thousand nine hundred ninety,” “nineteen ninety,” or “one nine nine
oh”), dates, units, symbols, contracted forms, acronyms, and abbreviations (“Mr.,”
“Ltd.,” and “Co.” need to be replaced with “mister,” “limited,” and “corporation,”
respectively) are of interest. Specifically, for languages with no word delimiters

Fig. 3.1 Block diagram of a
typical SPSS-based TTS
system

3 Text-to-Speech Synthesis 41



such as Japanese, Chinese, Thai, and Myanmar, a word segmenter (or morpho-
logical analysis) is required to identify the boundaries of words within a text.
Syntactic dependency is also estimated between adjacent words/phrases. Based on
the predicted dependency, the pause prediction process determines where to insert
pauses in a sentence. Depending on the language, the G2P process produces
information based on the sequence of phonemes with lexical accents/stresses/tones
either by referring to pronunciation dictionaries incorporated in the system, or by
applying statistical/rule-based letter-to-phoneme conversion or their combination.
Further processes are necessary for generating pronunciations for particular lan-
guages, e.g., identifying phrase boundaries, determining the pronunciations of
heteronyms, processing euphonic changes, devoicing some vowels, etc. Finally, but
most importantly, the text analysis component creates and outputs a sequence of
phoneme labels with the linguistic context, namely context-dependent phoneme
labels. Context is a collection of linguistic information which are likely to affect the
acoustic characteristics of a synthetic speech, such as the preceding and following
phonemes, the position of syllables within a word, phrase, or utterance, and lexical
information such as accents/stresses/tones depending on the target language, which
are essential in modeling both the segmental and supra-segmental behaviors of
acoustic features. Some of the typically- and practically-used contextual factors are
listed in Table 3.1.

3.2.2 Forefront: GSV-Based Method with Deep Learning

Machine learning technology is used to extract linguistic features from input text
(hereafter called front-end). In the conventional front-end, a lexicon or dictionary is

Table 3.1 Example of contextual factors that can be used in context-dependent phoneme labels

Type Description of contextual factors

Lexical Current phoneme
Preceding and following phonemes

Accent/stress/tone of preceding/current/following syllable

Part-of-speech of preceding/current/following word

Positional Position of current phoneme in syllable

Position of current syllable in word/phrase/utterance

Position of current word in phrase/utterance
Position of current phrase in utterance

Distance from stressed/accented syllable to current syllable within word/phrase

Length Number of phonemes in current syllable
Number of syllables in current word
Number of syllables/words in current phrase

Number of syllables/words/phrases in utterance

Others Word/phrase dependency (i.e., modification structure)
End tone of phrase
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necessary for G2P and part-of-speech (POS) tagging, while a language model has to
be maintained for word segmentation and syntactic dependency analysis. With the
advance in neural network-based machine learning, it has been made possible to
model relationships between text and the underlying linguistic features in a
sequence-to-sequence manner, i.e., enabling a direct conversion from text to lin-
guistic features.

A neural network-based front-end presented in [6] consists of the following
parts: (1) text encoding using global syllable vectors (GSVs) and (2) decoding of
the GSVs to obtain linguistic features. GSVs are distributional real-valued repre-
sentations of syllables and their contextual interactions within normal sentences,
which are learned from a large-scale plain text corpus using an unsupervised
learning algorithm [7]. The decoding is based on deep bi-directional recurrent
neural networks (DBRNNs) which are suitable for solving sequence prediction
problems at multiple time scales [8]. GSV-based front-end with DBRNNs can
achieve high performance and is fast at running time.

3.2.2.1 Approach Outline

Figure 3.2 shows a schematic diagram of neural network-based text analysis using
GSVs as features for the input to DBRNNs. GSVs are learned by GloVe [7] in an
unsupervised manner, while DBRNNs are trained with a supervised method.

Fig. 3.2 Schematic diagram of GSV-based extraction of linguistic features from text
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1. Learning GSVs from a Plain Text Corpus

The statistics of syllable occurrences in a large-scale text corpus is the primary
source of information for GloVe to learn space vector representations of syllables.
Let X denote the matrix of syllable-syllable co-occurrence frequencies, and xij
occurrence frequency for syllable j occurring in the context of syllable i within a n-
syllable symmetric window. GloVe generates d-dimensional syllable vectors by
minimizing the following cost function [7].

J ¼
XV

i;j¼1
q xij
� �

sTi ~sjþ biþ ~bj � log xij
� �2 ð3:1Þ

where V is the size of syllable vocabulary, si 2 Rd a syllable vector and ~sj 2 Rd is a
separate context syllable vector, bi and ~bj are biases, respectively. qðxijÞ is a
weighting function to avoid frequent co-occurrence from being overweighted [7].
Because X is symmetric, both the syllable vectors si and the separate context
syllable vectors ~si are equivalent, just with different random initializations.
Consequently, GSVs are siþ~si; i ¼ 1; . . ., V.

2. DBRNN-Based Prediction

Figure 3.2 shows two-hidden-layer DBRNNs. At time-step t, corresponding to a
syllable, each intermediate layer receives one set of parameters from the previous/
next time-step in the same layer, and two sets of parameters from the previous
bi-directional hidden layers: one input comes from the forward layer and the other
from the backward layer. More formally,

~h 1ð Þ
t ¼ f ~W 1ð Þxt þ~V 1ð Þ~h 1ð Þ

t�1þ~b 1ð Þ
� �

ð3:2Þ

h
 1ð Þ
t ¼ f W

 1ð Þ
xt þV

 1ð Þ
h
 1ð Þ
tþ 1þ b

 1ð Þ� �
ð3:3Þ

~h ið Þ
t ¼ f ~W ið Þ

!~h
i�1ð Þ
t þ ~W ið Þ

 h
 i�1ð Þ
t þ~V ið Þ~h ið Þ

t�1þ~b ið Þ
� �

ð3:4Þ

h
 ið Þ
t ¼ f W

 ið Þ
!~h

i�1ð Þ
t þW

 ið Þ
 h
 i�1ð Þ
t þV

 ið Þ
h
 ið Þ
tþ 1þ b

 ið Þ� �
ð3:5Þ

where i [ 1, arrow ! indicates the forward direction and ← the backward
direction, h stands for hidden representations, W and V are the weight matrices, b
the biases, xt the input vectors, and f xð Þ an activation function which is selected
according to tasks. The network output, y, at time-step t is
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yt ¼ g ~U~h
Lð Þ
t þU

 
h
 ðLÞ
t þ c

� �
ð3:6Þ

where L is the number of layers, U the weight matrices, c the biases, and g xð Þ the
softmax function. Output at time-step t is determined by argmax ytð Þ.

3.2.2.2 Evaluation

Benchmarking experiments have been conducted using Chinese Treebank 9.0 from
the Linguistic Data Consortium (LDC) and in-house speech corpora, which are
used to extract pause break samples for supervised learning. Plain text as a sequence
of syllables in Chinese is used as the basic unit for prediction. Five main tasks of
front-end are evaluated. Table 3.2 tabulates the experimental setup. Training,
development, and test sets are disjoint.

1. GSV Learning

A Chinese text corpus amounting to 35 million syllables is used to learn GSVs with
varying vector size (25, 50, 100, 200, and 300) and window size (10 and 20
syllables). The size of vocabulary, V , is 5610 (unique syllables).

2. Network Training

The standard multiclass cross-entropy is used as the objective function when
training the neural networks. Stochastic gradient descent is used in the experiment
with a fixed momentum (0.9) and a small learning rate (0.0001). Weights are
updated after mini-batches of 20 sentences. The size of networks changes from 25,
50, 100, to 150 units per hidden layer, but a network has the same number of hidden
units across multiple forward and backward hidden layers. The networks are trained
with maximum 2,000 epochs, and early stopping is employed: out of all iterations,
the model with the best performance for the development set is selected as the final
model to be evaluated.

The experimental results are shown at Table 3.2 where the size of GSVs is 50
and the networks have 2 hidden layers and 100 units per layer. Generally speaking,
the results are comparable with the baseline conditional random fields (CRFs). For

Table 3.2 Experimental setup and results

Task Training/Dev/Test Act. function Output size Accuracy CRFs

G2P 44 k/3 k/3.5 k sens tanh 1390 (pinyins) 99.05 98.15

Word segment 95 k/10 k/12 k sens ReLU 4 (B, I, E, S)a 94.31 95.05
POS tagging 95 k/10 k/12 k sens tanh 44 tags 87.33 90.30
Phrasing 81 k/11 k/12 k sens tanh 2 (phrase, other) 94.61 93.96

Pause prediction 30 k/3 k/6 k utts ReLU 2 (pause, other) 97.34 97.09
aS indicates a mono-syllable token. B, I, and E indicate the syllable positions: at the Beginning, the
Inside, and at the End of a token, respectively
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some tasks like Grapheme-to-phoneme (G2P), the proposed method outperforms
the CRFs. Our results also indicate that the effect of GSV size on the performance is
slight and that on the window size used for learning GSVs is not significant. Further
details can be found in [6].

3.3 Speech Signal Generation

3.3.1 Statistical Parametric Speech Synthesis

Statistical Parametric Speech Synthesis (SPSS) is a framework that generates
synthetic speech based on statistical models. One of the advantages that the SPSS
has is its high flexibility with respect to voice variation and speech style. On the
other hand, overcoming the degradation of speech quality, which is often caused by
the differences between the original features and the estimated features by models
and the over-smoothing during the modeling process, is an important focus of
research. Conventionally, speech synthesis has been actively studied based on the
HMM, however in recent years, the center of attention has been replaced by Deep
Neural Network (DNN)-based studies [9], as it has been reported by many that
DNN outperforms the HMM. Thus, this section will focus on the procedural steps
on how to apply DNN in speech synthesis. Figure 3.3 illustrates the overview of the
procedure.

3.3.2 Acoustic Model Training

In order to convert text into speech, context-dependent phoneme labels which
consist of phonemes and parts of speech are extracted. Then, acoustic features such
as spectral envelopes which represent the vocal tracts, and fo which indicates the

Fig. 3.3 Overview of the DNN-based speech synthesis
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pitch of voices, are extracted from the speech. DNN uses the context labels as the
input and the acoustic features as the output vectors and trains itself by mapping
them out. Specifically speaking, the probability distribution of the acoustic features
is modeled instead of directly using the acoustic features themselves as output
vectors. While context labels in general are generated in phoneme units, the
acoustic features are generated in analysis units called frames. Frame is the mini-
mum unit of the length of a phoneme, and therefore context labels are generated in
frame units by indicating the positions of the frames within a phoneme. DNN is
trained to minimize the mean squared error between the acoustic feature vectors
extracted from the training data and normalized as Z-scores (i.e., mean 0, standard
deviation 1), and the vectors predicted by DNN. This is equivalent to modeling the
the probability density function (p.d.f.) of an original speech parameter vector using
the Gaussian distribution as follows:

P ojkð Þ ¼
YT

t¼1
N otjlt;Uð Þ ð3:7Þ

where o ¼ oT1 ; . . . o
T
t ; . . . o

T
T

� 	T
denotes a speech parameter vector sequence, k

denotes DNN parameter set, and N �; lt;Uð Þ denotes a Gaussian distribution with a
mean vector lt and a covariance matrix U. lt is an unnormalized mean vector given
by the speech parameter vector predicted by DNN. U is a global covariance matrix
calculated from all frames.

3.3.3 Speech Generation

By using the trained model, the acoustic feature sequences can be predicted from
the linguistic feature sequences correspondent to the given text. As mentioned
earlier, DNN is capable of predicting the mean vector of the p.d.f. of acoustic
features for each frame, from the linguistic feature sequences that have been
transposed from phoneme units to frames. Then, in consideration of both static and
dynamic features, acoustic feature sequences with smoother transitions are gener-
ated [10]. Finally, using a “vocoder,1” synthetic speech is generated from the
predicted acoustic feature sequences.

1“Vocoder” is a coined term originated from “voice coder.” It generally refers to the whole process
of encoding and decoding speech signals for their transmission, compression, encryption, etc., but
in the field of TTS, “vocoder” often concerns only the decoding part, where speech waveforms are
reconstructed from their parameterized representations.
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3.3.4 Forefront: Subband WaveNet for Rapid
and High-Quality Speech Synthesis

In 2016, deep neural network-based raw audio generative models such as WaveNet
[11] and SampleRNN [12] have been proposed, which can synthesize a more
natural-sounding speech signals compared with the conventional source-filter
model-based vocoders. While vocoders require complicated signal processing for
analysis and synthesis with loads of approximations and assumptions, no signal
processing—not even Fourier transform—is employed in raw audio generative
approaches, which means they can directly model generative probabilities of raw
speech waveforms from a speech corpus by using neural networks. As a result, with
raw audio generative models, analysis errors and approximation problems which
occur in the conventional source-filter model-based vocoders, are not considered an
issue. Such models can realize end-to-end speech synthesis from texts to raw speech
waveforms within a neural network framework, such as char2wav [13], Tacotron
[14], and Deep Voice [15]. In the 2017 European Signal Processing Conference
(EUSIPCO), a keynote presentation entitled “Speech synthesis: where did the signal
processing go?” was given by Dr. Simon King, in accordance with the latest trend
of end-to-end speech synthesis with neural networks. To answer this question, this
section introduces the benefits of signal processing for solving two problems in
WaveNet.

The conditional probability distribution p(x|h) of raw audio waveform x = [x(1),
…, x(T)] in WaveNet models, given an additional input h, such as linguistic features
for TTS [11] and acoustic features for vocoder [16], can be formulated as:

p xjhð Þ ¼
YT

t¼1
p x tð Þjx 1ð Þ; . . .; x t � 1ð Þ; hð Þ ð3:8Þ

by a stack of dilated causal convolution layers, which efficiently inputs very long
audio samples with just a few layers. In addition, the WaveNet model outputs a
categorical distribution instead of a continuous one over to the next sample xðtÞ
with a softmax layer since it is more flexible and can easily model arbitrary dis-
tributions, although raw waveform inputs are typically treated as continuous values.
In WaveNet, a l-law encoding, standardized as G.711 [17] is introduced and raw
audio waveforms are quantized to 256 possible values. In the training phase,
WaveNet can be trained in parallel because all of the x timestamps are known. In
the synthesis phase, however, Eq. 3.8 indicates that WaveNet must sequentially
synthesize each sample that is fed back to the network in order to synthesize the
next one. Therefore, the synthesis speed problem in WaveNet was yet to be solved
in 2016, even though parallel computing had been available. The synthesis speed
problem is especially severe with higher sampling frequencies for high-quality
synthesis, although conventional vocoders can synthesize speech waveforms in real
time. Deep Voice introduced smaller networks that quickly predict speech wave-
forms in real time. However, there is a tradeoff between the synthesis speed and the
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synthesized speech quality [15]. In 2017, a parallel WaveNet architecture was
proposed and the synthesis speed problem has been solved [18]. However, it still
requires a quite complicated neural network training scheme. In addition, Eq. 3.8
indicates that WaveNet models are trained to maximize the signal-to-noise ratio
between the speech waveforms of the training set and that of the synthesized ones
throughout the frequency range and the prediction errors therefore occur uniformly.
As a result, noise components can be heard when their power is greater than the
speech components. This problem is also severe with higher sampling frequencies.
In parallel WaveNet, additional loss functions were introduced to synthesize
high-quality speech waveforms with a sampling frequency of up to 24 kHz.

In order to facilitate rapid synthesis and to realize higher-quality synthesis with
sampling frequencies of 32 and 48 kHz, covering the entire human auditory fre-
quency range, a subband WaveNet [19, 20] has been proposed by introducing
multirate signal processing [21]. The proposed subband WaveNet architecture is
quite simpler than the parallel WaveNet. By introducing a square-root Hann
window-based overlapped single-sideband (SSB) filterbank, subband WaveNet can
accelerate the synthesis speed and improve the quality of the synthesized speech
better than the fullband WaveNet as it improves the prediction accuracy of the
WaveNet. A block diagram of the proposed subband WaveNet is described in
Fig. 3.4.

In the training stage, fullband speech waveforms x = [x(1), …, x(T)] in the
training set are decimated by a factor M and decomposed into N subband streams
xn = [xn(1), …, xn(T/M)] with short length T/M and low sampling frequency fs/
M by an overlapped SSB analysis filterbank, where N is the number of subbands.
Each subband WaveNet network pn(xn|h) is then separately and efficiently trained
by each subband waveform xn with acoustic features h. In the synthesis phase, each
subband stream x̂n ¼ x̂nð1Þ; . . .; x̂nðT=MÞ½ � is simultaneously generated by the
trained network and upsampled by M and each subband waveform with a sampling
frequency of fs is obtained by an overlapped SSB synthesis filterbank. Compared
with the conventional fullband WaveNet, the proposed subband WaveNet can
synthesize N samples at once and realize M times the synthesis speed with parallel
computing.

Figure 3.5 shows the spectrograms of an original female test set speech wave-
form and those estimated by fullband and subband WaveNets for unconditional
training and synthesis; where each estimated sample x̂ðtÞ was generated with
original past samples [x(1), …, x(t − 1)], and the estimated waveform was obtained
as x̂ ¼ x̂ð1Þ; . . .; x̂ðTÞ½ � with a sampling frequency of 32 kHz. The results of the
spectral and mel-cepstral distortions indicate that the proposed subband WaveNet
can more accurately synthesize speech waveforms than the conventional fullband
WaveNet.

The results of a paired comparison listening test between the conventional
fullband WaveNet and the proposed subband WaveNet with 21 listening subjects
suggested that the proposed subband WaveNet significantly improved the quality of
the synthesized speech than the fullband WaveNet [19]. In addition, a subband
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Fig. 3.4 Block diagram of the proposed subband WaveNet

Fig. 3.5 Spectrograms: a test set original female speech waveform with a sampling frequency of
32 kHz, b estimated by fullband WaveNet, c estimated by subband WaveNet
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WaveNet vocoder with a sampling frequency of 48 kHz outperformed the con-
ventional source-filter model-based vocoders [20].

Consequently, subband signal processing can accelerate the synthesis speed and
improve the quality of the synthesized speech in a raw audio generative model.
Future works include the investigations of subband WaveNet architecture-based
TTS.

3.4 Future Directions

As we have seen through this chapter, a remarkable progress has been made in the
field of both research and development and the rapidly evolving deep learning
techniques are expected to resolve many of the existing issues of TTS, in the not too
distant future. Some novel approaches that do not consider the aforementioned
separation of the TTS process have been proposed very recently, which allow the
acoustic features (or speech waveform itself) to be produced directly from text, by
fully exploiting the latest deep learning techniques. Such “end-to-end” approaches
are still challenging and a detailed description of these is beyond the scope of this
book. A list of the references is included at the end of this chapter for those readers
who are enthusiastic about exploring such sophisticated approaches in greater
depth.
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Chapter 4
Language Translation

Kenji Imamura

Abstract This chapter introduces the machine translation part. Machine translation
(or text-to-text translation) is one component of speech translation and is used for
translating automatic speech recognition (ASR) output into text-to-speech
(TTS) input. This section will also explain about neural machine translation,
which is the most major translation methodology in recent years.

4.1 Overview of Machine Translation

Machine translation (MT) converts text written in a certain language into that in
another language. The input language is called the “source language,” and the
output language is called the “target language.”

Figure 4.1 shows an example of translation from Japanese to English. Lines
between the languages indicate the correspondence between words (called “word
alignment”). As one may see, machine translation requires a combination of a few
different operations:

• If the language is different, words must be converted into different words of the
same meaning because the vocabulary is different;

• Words may not always correspond with each other between the source and
target languages. Therefore, in some cases, words may need to be eliminated or
added, and expressions constructed by multiple words may also have to be
converted into different multi-word expressions;

• The sentences of source and target languages must be placed in different word
orders.
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Machine translation performs these operations simultaneously. Most machine
translation systems in recent years are based on corpora. Namely, we collect a large
number of bilingual sentences as shown in Fig. 4.1 and learn models for translation.
We call this set of bilingual sentences “bilingual corpus.” The conventional
machine translation systems attempted to acquire the above-mentioned operations
for translation from corpora. This approach assumes that a sentence translation is
constructed from a combination of translated parts. This is called “compositional-
ity.” Based on this assumption, statistical machine translation (SMT) [1] was
formulated.

However, with the development of deep learning techniques in recent years,
methods that are not based on compositionality have been proposed. One typical
example is neural machine translation (NMT), which is an end-to-end machine
translation method. “End-to-end” means that a source sentence (an input word
sequence) can be translated into a target sentence (an output word sequence) with a
single model and for this reason, learning and translation processes can be com-
pleted in one single step. NMT has become mainstream in speech translation since
it has been investigated that higher performance can be achieved compared to SMT.

Many techniques used in neural machine translation are common not only to
machine translation but also to neural networks (e.g., the backpropagation). In this
chapter, we will focus on techniques that are unique to machine translation, and the
explanation of common techniques for neural networks will be left to other books.

In the following sections, we first explain how to handle languages in neural
networks (Sect. 4.2). Next, we will talk about the model used for NMT, which is an
extension of monolingual language models for two different languages combined
(Sect. 4.3). Then, we will review the learning and translation processes in Sect. 4.4.

4.2 Recurrent Neural Network Language Models

When we handle languages with neural networks, there are two points to be noted:
(1) the input and output are sequences of variable lengths, and (2) the input and
output are symbols represented by words.

Fig. 4.1 Example of Japanese–English translation
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4.2.1 Recurrent Neural Networks

The variable length issue can be solved by using a recurrent neural network (RNN).
Figure 4.2 shows the simplest structure of an RNN. The input x is converted to
output y through a hidden layer h. Then, the output from h becomes the input for
itself in the next timestep. Along the temporal axis t (the word position in the case
of languages), the RNN treats sequences of unlimited length by inputting the output
from time t � 1 to time t. This is represented by the following formulae:

ht ¼ f Uxt þWht�1ð Þ; ð4:1Þ

yt ¼ g Vhtð Þ; ð4:2Þ

where xt, yt and ht denote the states (concretely, vectors of real values) of the input,
output, and hidden layers at time t, respectively. V, U, and W denote the linear
weights between the input and hidden layers, the hidden and output layers, and the
hidden layer itself, respectively. f and g denote the activation functions of the
hidden and output layers, respectively.

When the RNN unit of Fig. 4.2 is expanded according to the temporal axis, the
structure becomes what is shown in Fig. 4.3. It is found that the output yt at time t is
influenced by the input x1 of time 1 through multiple hidden layers. However, in a
practical situation, it is difficult to learn the network parameters so that x1 affects yt
using simple RNN units. This is called the “vanishing gradient problem,” where the
network is adapted to the output only using the neighboring inputs because the
flexibility of the parameters is very high. Long short-term memory (LSTM) [2] is an
RNN unit which contains the input, output, and forget gates, and learns which of
the elements should be emphasized or eliminated. By using LSTM as the RNN unit,

Fig. 4.2 Recurrent neural
network

Fig. 4.3 Process of
variable-length sequence
using recurrent neural
network
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the appropriate parameters can be learned even with a long sequence.1 For further
details, please refer to other specialized books on neural networks.

4.2.2 Word Embedding

As for the second issue in handling languages with neural networks—the input and
output are symbols—we employ a method so that a symbol is represented by the
one-hot vector and converted into a “word embedding (Fig. 4.4).”

The one-hot vector is a high-dimensional sparse vector, whose number of
dimensions is equal to the vocabulary size. Each dimension represents a word. The
word is represented by setting 1 as the position corresponding to the input word and
setting 0 for the others. On the other hand, word embedding is a dense vector (a
vector of real values), which is linearly converted from the one-hot vector into a
fixed dimension vector. The number of dimensions is usually around 1000 or less.
If the word embedding is precisely learned; semantically similar words will come
closer to each other in the vector space [3].

When outputting a word, the word embedding is converted into a vector having
the same dimensions as the one-hot vector (word distribution). However, it is not
one-hot, but a vector that maintains a word generation probability in each dimen-
sion. The word distribution is normalized by the SoftMax function to set the sum to
1. Generally, a dimension (i.e., word) having a maximum probability is selected
from the word distribution and used as the output.

Note that the vocabulary size is usually limited to tens of thousands due to
learning efficiency. When we limit the vocabulary, high frequency words in the
training data are selected. This criterion covers many words with a small vocabulary
size. Words that are out-of-vocabulary are grouped and associated with a special
symbol (often referred to as “UNK”) while the network is being learned and
applied.

Fig. 4.4 Conversion from one-hot vector to word embedding

1There is another RNN unit called the gated recurrent unit (GRU). Also, there are several versions
of LSTM, which are slightly different from each other.
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4.2.3 RNN Language Model

A language model is a model that represents the generation probability of a sen-
tence (a word sequence). The sentence generation probability PrðwÞ of a word
sequence w is decomposed into the product of the word generation probabilities
based on the chain rule.

Pr wð Þ ¼ Pr w1;w2; . . .;wTð Þ
¼ Pr w1ð ÞPr w2jw1ð ÞPr w3jw2;w1ð Þ. . .Pr wT jwT�1; . . .;w1ð Þ

¼
YT

t¼1

Pr wtjwt�1
1

� �
;

ð4:3Þ

where T denotes the number of words in a sentence, and wt�1
1 denotes the history of

the words from the beginning of the sentence to position t � 1.
The word generation probability depends on its history. N-gram language

models, which are used in statistical machine translation, limit the history to the
previous n� 1 words to facilitate the learning.2 Using RNN, on the contrary, we
can implement the language model without any restrictions on history because the
RNN itself maintains the whole history in the hidden layers [4]. This model is
called RNN language model (RNNLM).

Figure 4.5 illustrates the structure of an RNNLM. An input word is encoded into
a word embedding and converted to a word distribution through LSTM units and a
SoftMax function. This distribution is regarded as the word generation probability
of the language model. A word is selected and output among all words. One
characteristic of the RNNLM is that the output word becomes the input word of the
next LSTM unit. The generation will be aborted when the end-of-sentence symbol

Fig. 4.5 Structure of RNN
language model

2In statistical machine translation, 3- to 5-gram language models are commonly used.
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(EOS) is output. Therefore, the RNNLM contains the EOS symbol in its
vocabulary.

The training of the RNNLM is carried out using backpropagation, which is also
used for the training of other neural networks. The error, in this case, is the dif-
ference between the output word distribution and the one-hot vector of the correct
word. During training, the error of the output word distribution wt is backpropa-
gated to the input, and then the error of the word distribution wt�1 is backpropa-
gated. This process is called “backpropagation through time (BPTT)” because the
training continues to go back and be applied on the temporal axis. After training the
RNNLM, all parameters in the network, i.e., not only the LSTM parameters but also
the conversion parameters of the word embeddings are simultaneously learned.

4.3 Models of Neural Machine Translation

4.3.1 Encoder-Decoder Architecture

Machine translation based on neural networks has succeeded in the
encoder-decoder architecture [5], which combines two RNNs that handle the source
language and the target language, respectively.

A typical structure of the encoder-decoder is shown in Fig. 4.6. The input word
sequence is encoded into states (i.e., fixed-length vectors) using the encoder.
A “state” is regarded as an extension of the word embedding to a sentence. Using
the states as initial inputs, the decoder predicts the output words in order. The
translation is completed when the decoder outputs the end-of-sentence symbol.
These series of processes can be roughly interpreted that the encoder memorizes the

Attention

EOS

Encoder Decoder

Fig. 4.6 Typical structure of the encoder-decoder (with attention mechanism and bi-directional
encoding)
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input sentence and the decoder generates the output sentence by playing back the
memory.

Since the encoder and decoder are both RNNs, LSTMs are used for their units. It
is known that the sentences translated by the encoder-decoder are very fluent
because they are essentially the language models.

4.3.2 Attention

Even though LSTM is capable of handling long sequences, the “states” output from
the encoder cannot memorize the entire sentence because they are fixed length
vectors. The decoder sometimes generates a completely different translation when
the input sentence is too long.

To cope with this problem, Bahdanau et al. [6] introduced a mechanism called
“attention” to the encoder-decoder architecture. Attention computes the context,
which is a weighted sum of the encoder states in each word and uses it as the input
to the decoder. By changing the weights, the decoder can focus on a particular word
(or words) of the input sentence. The weight of each word is sometimes referred to
as “soft alignment” because it is similar to how the word alignment in statistical
machine translation becomes probabilistic.

For instance, the global attention proposed by Luong et al. [7] computes an
alignment vector at, whose length is equal to that of the input sentence from the
current decoder state ht and encoder states �r

at sð Þ ¼ align ht;�rsð Þ

¼ exp score ht;�rsð Þð ÞP
s0 exp score ht;�rs0ð Þð Þ ;

ð4:4Þ

where at and �rs denote the alignment (weights) and the encoder state at input
position s, respectively. Although different score functions have been proposed, the
general score can be computed by the following formula:

score ht;�rsð Þ ¼ hTt Wa�rs: ð4:5Þ

We obtain the weight of each input word by computing the above for all words
of the input sentence. The attention mechanism catches a quick glimpse of the input
sentence when generating the translation. By introducing the attention mechanism,
the system can increase the equivalence of the source and target languages without
detracting the fluency of the translation.
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4.3.3 Bi-directional Encoding

While the attention mechanism allows the decoder to refer to the context of the
input, contexts have directionality; therefore, if the input sentence is encoded
simply from the beginning to the end, the context that follows a particular word
would not be recognized. To avoid this problem, we introduce another encoder that
encodes from the end of the sentence to the beginning, so that the attention can refer
to the context from both directions. The attention refers to the input state which is
comprised of two concatenated states: the state from the beginning to the end and
that from the end to the beginning. This is called “bi-directional encoding.”3 By
using the bi-directional encoder, the context of the input sentence can be encoded
more precisely. There is also an idea that the decoder should be bi-directional.
However, it is not practical because the decoding becomes too complicated
although it is known to be effective [8, 9].

4.3.4 Enhancement of Memory Capacity

To improve translation quality, the amount of learning data must be increased and
to do so, the capacity of network must be taken into account. In this case, the
memory capacity of the encoder and decoder must also be enhanced. There are two
approaches to enhance the memory capacity. One is to simply increase the number
of dimensions of the encoder and decoder states. Since the learning and translation
time increases as the number of dimensions increases, the pros and cons must be
considered.

Another approach is to make the encoder and decoder “multi-layered.” Since the
output of the RNN unit is a word embedding, it can be input to a different RNN
unit. By multi-layering the RNN units, more training data can be learned. Indeed,
Google Neural Machine Translation (GNMT) [10] constructs the encoder and
decoder using 8-layer LSTMs and enabling very large amounts of bilingual texts to
be learned.

4.4 Training and Translation

4.4.1 Training

NMT is trained using backpropagation as done in RNN training. The errors are
propagated from the last word to the first word of the decoder and furthermore,

3When LSTM is used as a RNN unit, it is sometimes called “bi-directional LSTM” or “bi-LSTM.”
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propagated to the encoder. Because this is an online learning, the network is
basically trained sentence by sentence.

NMT is trained by iterating tensor computation. A tensor roughly generalizes a
matrix—from a second-order tensor to a higher order. Since tensor operations can
be computed quickly using graphics processing units (GPUs), NMT is usually
trained on GPUs. In addition, when the GPU power is high, multiple data can be
combined into one tensor which can be trained simultaneously in one computation.
This multiple datum set is called “minibatch.”

The data in a minibatch are bilingual sentences that vary in length. When we
construct the minibatch, it is effective to bundle the source and target sentences that
have the same length so that the same number of sentences can be processed at
every word position.

The appropriate size of the minibatch (how many sentences are processed at a
time) depends on the data. If we increase the size, the number of sentences pro-
cessed per hour is also increased. However, fine tuning becomes difficult because
the number of parameter updates in the entire data decreases. Conversely, if we
decrease the size, the parameter will be overfit to the last learned data, and the
accuracy will degrade.

4.4.2 Beam Search

During the translation process, the decoder outputs a word distribution of each word
by computing the network tensors. Then, words with the maximum probabilities are
selected from the word distribution. Translation is completed by outputting the
selected words in series.

The above process is a 1-best translation using a greedy search algorithm.
However, at times, the inferior hypotheses may result to be better than the first
hypothesis after all. Therefore, it is better to search for the best sequence throughout
the entire time axis. This is called “beam search” and is used with NMT.

The beam maintains the history of output words until the current time and their
decoder states. When the beam width is N, the decoder generates N word distri-
butions from each state. Then, it selects the top N words from the word distributions
(namely, it generates N � N hypotheses). A new beam is created by pruning them
leaving N hypotheses. The decoding continues onto the next word and stops when
all hypotheses in the beam is finished with an end-of-sentence symbol. The
translation is the best hypothesis; where the sum of the log-likelihoods—which are
logarithms of the word generation probabilities—is the highest.

ŷ ¼ argmaxy
X

t

log Pr ytjyt�1
1 ; x

� �
; ð4:6Þ
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where ŷ denotes the final translation, yt denotes the output word at the position t,
yt�1
1 denotes the history of the output words from the beginning of the sentence to
the position t � 1, and x denotes the input word sequence.

Figure 4.7 shows an example of the search lattice for beam search. The input is
the same Japanese sentence used in Fig. 4.1, and the beam width is assumed to be
3. Each node at least contains the selected word, its log-likelihood, and its history.
While advancing the position t, the beam searcher selects three hypotheses of the
highest scores and prunes the others. Finally, “I go to school.” is selected in this
example.4

4.4.3 Ensemble

The accuracy of neural network is known to improve when the outputs from
multiple models are averaged [11]. This is called “ensemble.” In the case of NMT,
an input sentence is independently encoded and decoded using each model, and the
output word distributions are averaged. The beam search is applied to the averaged
word distribution.

There are different model types for the ensemble; models of another epoch in one
training, models of the same structure with the initial parameters being different,
and models with different structures (as in the number of layers, their dimensions,
and so on). Among them, the most effective combination is the models with dif-
ferent structures. However, the target vocabulary has to be the same because the
ensemble averages the output word distributions.

4.4.4 Sub-words

NMT translates a sentence while generating one-hot vectors of the input words and
word distributions of the output words. Both of them are vectors whose numbers of
dimensions are equivalent with their vocabulary size. Therefore, NMT cannot
handle an infinitive vocabulary set, and the size is usually limited to tens of

Fig. 4.7 Lattice example of beam search

4In contrast to Fig. 4.1, ‘the’ was eliminated.
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thousands. The out-of-vocabulary words are translated after converting them into
“UNK” symbols.

To make the vocabulary size as small as possible, characters should be used as
the translation units. However, in general, the characters of the source and target
languages do not correspond with each other (except for the languages of the same
character set). Therefore, methods that use sub-words have been proposed. The
sub-words are units smaller than words and larger than characters.

For instance, Byte Pair Encoding (BPE) [12] first decomposes a word into
character symbols, and subsequently create a new symbol by merging two adjacent
and highly-frequent symbols. The merging process is aborted when the number of
symbol types reaches the desired vocabulary size.

Figure 4.8 is an example where the word ‘lower’ is decomposed into sub-words.
To clarify the word delimiters in a sub-word sequence, a special character ‘_’ is
supplied to the end of the word. In the above example, the word is first decomposed
into character symbols. BPE merges two adjacent symbols that are the most fre-
quent in the training corpus and creates a new symbol in series. In this example,
four merge operations are applied, and finally the word is segmented into two
sub-words ‘low’ and ‘er_’.

By introducing sub-words, almost all words can be translated without the
“UNK” conversion. Sub-words by BPE do not always become meaningful units.
However, this is not a problem in sequence-to-sequence learning based on LSTMs
because translation is generated after memorizing the whole sentence, and the
attention can refer to multiple symbols at the same time.

4.4.5 Multilingualization

The basic strategy to realize multilingual translation is to collect bilingual corpora
of the source and target languages and learn a translator from sentences in the

Fig. 4.8 Example of byte
pair encoding
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corpora (direct translation). However, in some languages, it is impossible to collect
bilingual corpora that are large enough to learn the translator. In this case, we define
a third language as a pivot—which is different from the source or target language—
and translate the sentence using two translators connected in series; from the source
to the pivot and from the pivot to the target language. This is called “pivot trans-
lation” [13, 14]. The pivot language should be a language in which large corpora
exist, i.e., English.

There is another strategy upon using NMT based on the encoder-decoder
architecture. That is to learn the encoder and decoder using different language pairs
that are not objective. This is called “zero-shot translation” [15].

Figure 4.9 illustrates the differences among direct, pivot, and zero-shot trans-
lations. In this figure, zero-shot translation learns a translator from three language
pairs (S1–T1, S2–T1, S1–T2) and translates the S2 language into T2. The encoder
for the S2 language is learnt from the S2–T1 pair, and the decoder for the T2
language is learnt from the S1–T2 pair. It should be noted that S2 can be translated
into T2 although the language pair S2–T2 has not been learnt.

Since zero-shot translation assumes that multiple language pairs are trained at
the same time, the models of the translator are required to support multiple lan-
guages. The encoder-decoder architecture based on the LSTMs enables the above.
For input sentences, the encoder encodes them regardless of the language.
However, the decoder must output translations in a specific language. The output
language is specified by adding a target language tag to the beginning of the input
sentence (Fig. 4.10). Then, the target language information is included in the
encoded states, and the decoder can generate a translation according to the tag.

Fig. 4.9 Direct, pivot, and
zero-shot translations

Fig. 4.10 Example of
training data of zero-shot
translation
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Pivot translation can be applied to both SMT and NMT. In addition, the
translation quality is better than that of direct translation if the bilingual data is
insufficient. On the contrary, zero-shot translation is only applied to NMT, and it
can only generate low-quality translation. However, it is drawing attentions as one
of the future possibilities of deep learning because it can translate sentences of
untrained language pairs.
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Chapter 5
Field Experiment System “VoiceTra”

Yutaka Ashikari and Hisashi Kawai

Abstract This chapter introduces “VoiceTra,” a speech-to-speech translation
system which utilizes the technologies introduced in the previous chapters.
VoiceTra’s client application has been released as to the public as a field experiment
and has marked a total of 3,921,186 downloads and has collected as many as
178,054,211 speech utterances (as of August 31st, 2019), allowing the system to
make continuous improvements. The following sections will cover the system
overview, the communications protocols used between the client and server, the
user interface of the client application, how the utterances are processed on the
speech translation server, and finally the statistical data based on user downloads
and logs.

5.1 System Overview

VoiceTra is a network-based multilingual speech-to-speech translation system in
which its client application runs on smartphones or tablet devices with either iOS or
Android. The client application is connected to the speech translation server via the
Internet. The speech translation server is capable of recognizing speech input from
users, translating them into other languages, and generating synthesized speech in
accordance with the translation results. These high-precision processes generally
require a large amount of computing resources and therefore, the speech translation
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accuracy of the VoiceTra system is more precise than that of a stand-alone system
that performs all processes on a single smartphone.

Figure 5.1 shows the structure of the VoiceTra system. When a user’s speech is
input to the VoiceTra client, the client sequentially requests the speech translation
server to process speech recognition, machine translation, and speech synthesis.
The speech translation server then executes these processes and returns the
respective results to the client. The client displays the speech recognition and
translation results and plays the synthesized speech of the translation result in audio.
The speech recognition and synthesis servers are prepared for each language and
the translation server is prepared for each language pair. Hence, each server is
independently running which makes things easier to update the models and server
software. For this reason, adding a new language is also simple. Table 5.1 shows a
list of supported languages for VoiceTra (as of August 2019). Speech recognition is
available for 18 languages including Japanese, English, Chinese, Korean,
Indonesian, Vietnamese, Thai, and Myanmar; and speech synthesis is supported for
16 languages. Machine translation is available between 31 languages which
amounts to 465 language pairs in total.

5.2 Communication Protocols for the Client and Server

Speech Translation Markup Language (STML) [1] is used as the communication
protocol between the client and server. The server receives the speech input from
the client as a speech recognition request <SR_IN>. The recognition result is sent
back to the client from the server as <SR_OUT>. The speech recognition result is
then sent to the server as a machine translation request <MT_IN>. The translation

ASR request
<SR_IN>

ASR result
<SR_OUT>

SS request
<SS_IN>

SS result
<SS_OUT>

MT request
<MT_IN>

MT result
<MT_OUT>

Speech
Recogni on

Server

Servelet

Machine
Transla on

Server

Servelet

Speech
Synthesis

Server

Servelet

Servers for VoiceTra

VoiceTra Client

Fig. 5.1 Structure of the VoiceTra system and data communication between the client and server

68 Y. Ashikari and H. Kawai



result is sent back to the client from the server as <MT_OUT>. The translation
result is sent to the server as a speech synthesis request <SS_ IN>. The synthesized
speech is sent to the client from the server as <SS_OUT>. In addition, the previous
translation result is sent to the server as <MT_IN>, translated back into the original
language, and sent back to the client as <MT_OUT>. This “back translation” is
used to check if the initial translation result contains the intended meaning from the
original input.

Table 5.1 List of supported languages for VoiceTra (as of August 2019)

Languages Speech input Speech output Text input/output

Arabic Available for all

Brazilian Portuguese 〇 〇
Danish

Dutch

English 〇 〇
Filipino 〇 〇
French 〇 〇
German 〇 〇
Hindi

Hungarian

Indonesian 〇 〇
Italian

Japanese 〇 〇
Khmer 〇 〇
Korean 〇 〇
Lao

Malay

Chinese (simplified) 〇 〇
Mongolian

Myanmar 〇 〇
Nepali 〇
Polish 〇
Portuguese

Russian 〇 〇
Sinhala

Spanish 〇 〇
Chinese (traditional) 〇 〇
Thai 〇 〇
Turkish

Urdu

Vietnamese 〇 〇
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Each of the requests and processing results are written in XML (Extensible
Markup Language). The speech and text data for each language are converted into a
MIME (Multipurpose Internet Mail Extensions) format text and transmitted via the
Internet using HTTPS (Hyper Text Transfer Protocol Secure).

By using STML, the speech translation server—capable of processing speech
recognition, language translation and speech synthesis—can easily be expanded to
support new languages or language pairs. Moreover, using STML as the commu-
nication protocol allows us to utilize multiple servers developed by different
companies and research institutions. Basic tag information included in each STML
request and result are as follows:

1. Speech recognition request <SR_IN>

<MaxNBest>: maximum number of N-best
<Language>: language code of input speech
<Audio>: input speech codec
<SamplingFrequency>: sampling frequency (Hz) of input speech.

The VoiceTra client records the input speech in 16 kHz 16-bit sampling rate and
transmits it to the server after compressing it to 1/4 using ADPCM. Since the
maximum number of N-best is normally set to 1, machine translation and speech
synthesis are performed in accordance to the best result achieved in speech
recognition.

2. Speech recognition result <SR_OUT>

<NBest>: N-best of the word strings and character strings of speech recognition
results

UTF-8 is used for character encoding.

3. Language translation request <MT_IN>

<SourceLanguage>: language code of the source language
<TargetLanguage>: language code of the target language
<NBest>: N-best of the input word strings and character strings

The character encoding is UTF-8.

4. Language translation result <MT_OUT>

<SourceLanguage>: language code of the source language
<TargetLanguage>: language code of the target language
<NBest>: N-best of word strings and character strings of the translation result

VoiceTra only outputs 1-best. The character encoding is UTF-8.

5. Speech synthesis request<SS_IN>
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<Language>: language code of the input text
<NBest>: N-best of input word strings and character strings
<Audio>: output speech codec
<SamplingFrequency>: sampling frequency (Hz) of the output speech

In VoiceTra, 1-best is set as the <NBest> of machine translation results. The
character encoding is UTF-8.

6. Speech synthesis result <SS_OUT>

<Language>: language code of the output speech
<Audio>: output speech codec
<SamplingFrequency>: sampling frequency (Hz) of the output speech

VoiceTra returns to the client speech in 16 kHz 16-bit sampling rate using
ADPCM.

5.3 User Interface

Figure 5.2 is a screenshot of the VoiceTra client application which shows an
example of the translation results between Japanese and English. To the left is the
main speech translation screen and the language selection screen is shown on the
right. The user inputs speech by tapping the microphone button at the bottom
center. The application automatically detects the end of the utterance and stops
recording. Then, speech recognition, machine translation, and back translation

Fig. 5.2 VoiceTra application: main translation screen (left) and language selection screen (right)

5 Field Experiment System “VoiceTra” 71



results are displayed in that order from the top and synthesized speech of the
translation result is played in audio. For example, in Fig. 5.2, what is displayed at
the bottom field is the back translation of the translation result in the middle (in this
case Japanese); which has been translated back to the original input language (in
this case English). If the back-translation result has the same meaning as the input,
the translation is likely to be correct, and by using this, users can check the validity
of translation result [2]. The translation direction can be switched by tapping the
area where it says “Japanese” at the bottom left corner.

5.4 Speech Translation Server

Speech translation systems are mostly used in face-to-face situations and it is
preferred that the speech translation results are simultaneously obtained at the end
of each utterance. To realize this, the speech translation process must be performed
in real time. The parameters such as beam width have been adjusted for this system
so that the mean real-time factor (RTF) for speech recognition becomes 0.5,
enabling the results to be obtained as soon as the speaker finishes speaking.
The RTF for machine translation is set to 0.051 or less. Without taking into account
the delay in network, speech translation results can be obtained at a speed of 0.05
times the duration of the utterance, right after the speaker finishes speaking. For
example, for an utterance 5 s long, the speech translation result can be obtained
within about 0.25 s from the end of utterance.

Table 5.2 shows the number of servers used for speech recognition and machine
translation. In the case of performing translation from Japanese to English, the
server can process up to 40 simultaneous requests without delay and it can with-
stand practical use up to an instant maximum of 80 simultaneous requests. This

Table 5.2 Number of servers used for speech recognition and machine translation

Source
language

Speech
recognition

Translation target language

Japanese English Mandarin Korean Others (for
each pair)

Japanese 40 – 8 8 8 4

English 20 8 – 4 4 4

Mandarin 20 8 4 – 4 4

Korean 20 8 4 4 – 4

Others
(for each)

8 4 4 4 4 4

1The value set for when statistical machine translation (SMT) is processed with central processing
units (CPUs) only and when neural machine translation (NMT) is processed with CPUs and
general-purpose graphics processing units (GPGPUs) combined.
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means that if the average utterance length is 5 s, the server can continue to process
about 480 utterances per minute.

5.5 Log Data Statistics

Since its first release on May 11, 2015 up until September 30, 2017 (873 days), the
number of downloads of the speech translation app “VoiceTra” marked a total of
1,021,966, of which 57.4% were iOS versions. The total number of translation
requests received by the VoiceTra server during the aforementioned period
amounted to 35,860,555, of which 52.46% were requests with Japanese being the
source language and 31.36% were with Japanese being the target language.
Table 5.3 breaks down the ratio into each source/target language and Table 5.4
denotes the number of requests received via different input methods (speech, text,
or from history) for each language.

Figure 5.3 shows the 7-day moving average of the number of translation
requests received by the VoiceTra server during the same period. The results in the
figure reflect the ratio of foreign people that have come to visit or stay in Japan. The
number of requests for the Myanmar language exceeded that of Chinese in early
June 2017, placing third below Japanese and English, the reason of which is
unknown. According to the device location information, it can be predicted that
62% of the input in the Myanmar language has taken place within its own country.

Table 5.5 shows the number of speech recognition requests made for each
language on July 5, 2017, a day in which we had a typical number of users, and the
average duration as well as the standard deviation values of the speech utterances.
Each utterance includes a 0.5 s pause at the beginning and end.

Table 5.3 Number of translation requests between each target/source language from/to Japanese,
in percentages

en zh ko vi my th id fr es other

from ja 62.0 15.8 5.1 3.6 3.0 2.4 1.2 0.9 0.7 5.3

to ja 58.3 18.4 6.5 3.0 4.9 1.8 1.3 0.7 0.4 4.8

Language codes indicate; ja: Japanese, en: English, zh: Chinese, ko: Korean, vi: Vietnamese, my:
Myanmar, th: Thai, id: Indonesian, fr: French, and es: Spanish, respectively

Table 5.4 Ratio of input methods (speech, text, and history) used for each language, in
percentages

Method ja en zh ko vi my th id fr es

Speech 69.7 77.4 66.2 74.3 59.6 88.8 63.8 52.9 75.8 54.1

Text 28.1 22.3 33.1 25.4 40.0 10.2 35.9 46.3 23.9 45.3

History 2.2 0.3 0.7 0.3 0.4 1.0 0.3 0.8 0.3 0.6
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Fig. 5.3 The 7-day moving average of the number of translation requests between May 11, 2015
to September 30, 2017

Table 5.5 Number of speech recognition requests made for each language on July 5, 2017, and
the average length and standard deviation values (s.d.) of the utterances in seconds

ja en zh ko vi my th id fr es

Requests 42,047 22,973 5849 3233 904 11,016 1223 253 696 280

Average length 3.71 3.72 3.42 3.28 3.02 3.34 3.7 3.39 3.58 3.26

s.d. 2.12 2.14 2.18 2.04 1.77 2.02 2.42 1.96 1.86 2.58
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Fig. 5.4 The frequency of Japanese speech recognition requests per hour on July 5, 2017
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The frequency of Japanese speech recognition requests made per hour on the
same day is shown in Fig. 5.4. While the results show that the frequency was low
between 1–6 a.m. and high between 8–9 p.m., no other significant fluctuations were
observed.

The distribution of Japanese speech utterance duration for the same day is shown
in Fig. 5.5. The curve in the diagram is an approximation to the Gamma
distribution.
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Chapter 6
Measuring the Capability of a Speech
Translation System

Fumiaki Sugaya and Keiji Yasuda

Abstract This chapter introduces an evaluation method for speech translation
systems. Since the method estimates the system’s capability in a commonly known
English proficiency measurement score such as TOEIC, the evaluation results are
very comprehensible not only for researchers but also for system users. This chapter
also formulates the evaluation errors and discusses the costs necessary for evalu-
ation. Lastly, we provide a solution to the evaluation cost issue by applying an
automatic evaluation method.

6.1 Introduction

After many decades of research and development, overseas travelers worldwide
now freely access to speech translation systems by smart devices. The speech
translation systems are widening the application range, i.e., to questionnaires in the
initial medical examination, emergency announcements, shopping, and trans-
portation Q&As. The ultimate question remains: how practical or useful are these
systems in real applications?

Many researchers and developers usually evaluate the translation systems with
BLEU [1] objective scores and subjective rank evaluations. However, the results
are only used to help improve the parameters or algorithms of the translation
systems and we would need a new evaluation method to answer the ultimate
question. When we hire new employees with foreign language skills for example,
we give the applicants a test and often call them in for additional interviews. This
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idea gives us a hint to relate the capability of the translation system to the test scores
for humans.

As for English tests, the Educational Testing Service (ETS) has been studying
and providing the Test of English for International Communications (TOEIC)1 for
more than 35 years, which has long been the global standard for measuring English
communication skills necessary for employment.

In the following sections, we will propose a translation-paired comparison
method which can relate the system’s capability to the TOEIC score. In this
method, bilingual speakers first compare the system’s translation results with that of
the examinees with various TOEIC scores. The TOEIC score of the system is then
calculated from the comparison data. This method requires two labor costs: the data
collection cost of the examinees’ translations and the subjective comparison cost by
the bilingual speakers. In Sect. 6.2, the proposed method is further described in
detail followed by Sect. 6.3 which shows the evaluation results of the actual sys-
tem. The error analysis is made in Sect. 6.4 and in Sect. 6.5, the evaluation costs
are explained. In Sect. 6.6, the automated method of the translation-paired com-
parison method is proposed. Finally, Sect. 6.7 concludes the sections and describes
some of the future tasks.

6.2 Translation-Paired Comparison Method

The translation-paired comparison method [2] is a precise evaluation method for
measuring the capability of a speech translation system. This section will explain
the method in detail.

6.2.1 Methodology of the Translation-Paired Comparison
Method

Figure 6.1 shows a diagram of the translation-paired comparison method in the case
of Japanese to English speech translation including speech recognition (SR) and
machine translation (MT). The two translation results; one done by humans and the
other by the system, are compared and evaluated by bilingual speakers of both
languages sentence by sentence, and a winning rate is calculated for all utterances.

First, native Japanese examinees—who are English learners with their capabil-
ities evaluated in TOEIC scores—are asked to listen to a set of Japanese utterances
and write the English translation on paper. The examinees are requested to present
an official TOEIC score certificate showing that they have taken the test within the
past six months. The Japanese is presented twice within one minute with a pause in

1https://www.ets.org/about.
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between. The pause time provided to humans for the translation was determined
based on the questionnaire carried out in advance. The SLTA1 test set, which
consists of 330 utterances from 23 conversations of a bilingual travel conversation
database [3, 4] is used for the test. The SLTA1 test set is only used for evaluation
purposes and not for the development of speech recognition and machine transla-
tion technologies.

Next, the handwritten translations are typed out and used in the following
subjective comparison. In the proposed method, the translations made by the
examinees and the output from the system are merged into evaluation sheets and are
then compared by an evaluator, who is a native English speaker and also under-
stands Japanese.

The evaluator comparatively ranks each utterance and repeats it for all test
utterances. Each utterance information is shown in one of the evaluation sheets in
the order of the Japanese test text and the two translation results, i.e., created by the
examinees and by the system. The two translations are randomly ordered and
presented to the evaluator to eliminate the evaluator’s bias. The evaluator is asked
to rank each utterance, following the steps illustrated in Fig. 6.2. The four ranks in
Fig. 6.2 are the same as those used in [5]. The ranks A, B, C, and D indicate:
(A) Perfect: no problems in both information and grammar; (B) Fair:
easy-to-understand with some unimportant information missing or flawed grammar;
(C) Acceptable: broken but understandable with effort; (D) Nonsense: important
information has been translated incorrectly.

Japanese 
Test text

Paired  
Comparison 

Evaluation
SheetTyping

Human 
Translation 

Result

Japanese 
Recognition

Accurate text 

Japanese-to-
English 

Machine 
Translation

Fig. 6.1 Diagram of translation-paired comparison method
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6.3 Evaluation Result Using the Translation-Paired
Comparison Method

Figure 6.3 shows the comparison results of the capabilities between machine
translation and examinees described in Table 6.1. The dots in Fig. 6.3 indicate the
measuring points. The MT input includes accurate transcriptions of utterances,
which means there were no errors in speech recognition. The total number of
examinees is thirty; five people in each score range from 300 s, 400 s, and up to
800 s. The horizontal axis in Fig. 6.3 represents the TOEIC scores of the examinees
and the vertical axis shows the system winning rate (SWR) calculated by following
equation:

SWR ¼ Nmt þ 0:5� Neven

Ntotal
ð6:1Þ

where NTOTAL denotes the total number of utterances in the test set, NMT represents
the number of “MT won” utterances, and NEVEN, indicates the number of even
(non-winner) utterances, i.e., no difference between the results of MT and humans.
The SWR ranges from 0 to 1.0, indicating that the degree of capability of the MT
system is relative to that of the examinee. An SWR of 0.5 means that the MT has
the same capability as the human examinee.

EVENSelect better result

Rank A, B, C, or D

Consider naturalness

Same rank?

No Yes

YesNo

Same?

Fig. 6.2 Procedure of
comparison for each utterance
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Figure 6.3 also shows that the SWR of MT is greater than 0.5 at TOEIC scores
of around 300–700, i.e., the MT system wins over humans with TOEIC scores
between 300 and 700. On the other hand, examinees with TOEIC scores of around
800 win over MT. In order to precisely determine the balanced point, we used
regression analysis which indicated that the capability-balanced area is just around
700. The straight line in Fig. 6.3 is the regression line which together with the
measuring points indicate that the exact capability-balanced point is 708. We
estimate this point as the system’s TOEIC score. Consequently, the translation
capability of the machine translation system equals that of the examinees at around
a score of 700 points.

The Institute for International Business Communication (IIBC) in Japan pro-
vides a proficiency scale which shows the relationship between the TOEIC score
and the communication proficiency. In this scale, five levels are defined. Level A is
860 points and up, B is between 730 and 860, and C is 470 and up. A TOEIC score
of 700 of the system means that it is close to a Level B, surpassing C. A Level C
communication proficiency means that speakers are capable of basic daily con-
versations and business communication in a limited domain. A Level B means that
one is capable of proper communication in any situation and this is the level where
the MT system is approaching towards.

The experimental result for MT combined with a speech recognition subsystem
has been also reported in [2]. This system’s TOEIC score is 548, where the speech
recognition errors reduce the SWR from that of a single MT subsystem.

Fig. 6.3 Evaluation results
using translation-paired
comparison method

Table 6.1 Evaluation Parameters

The number of examinees 30 people

Japanese speech recognition (SPREC) HMM acoustic model, n-gram language model

Machine translation (TDMT) Rule-based

Speech translation (ATR-MATRIX) SPREC + TDMT
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6.4 Error Analysis of the System’s TOEIC Score

The SWR (Yi) and TOEIC scores for the examinees (Xi) are assumed to satisfy the
population regression equation:

Yi ¼ b1 þ b2Xi þ ei i ¼ 1; 2; . . .; n ð6:2Þ

where b1 and b2 are population regression coefficients. The error term (ei) is
assumed to satisfy the following condition:

ðaÞ EðeiÞ ¼ 0

ðbÞ Vðe2i Þ ¼ r2; i ¼ 1; 2; . . .; n

ðcÞ Covðei; ejÞ ¼ Eðei; ejÞ ¼ 0 if i 6¼ j

ðdÞ ei ffi 0

ð6:3Þ

Under the above assumption, the standard deviation of the system’s TOEIC
score can be calculated by:

rt ¼ r
b2

�
�
�
�

�
�
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n
þ C0 � �Xð Þ2

P
Xi � �Xð Þ2

s

ð6:4Þ

where n is the number of examinees, C0 is the system’s TOEIC score, and �X is the
average of the examinees’ TOEIC scores. Equation (6.4) indicates that the mini-
mum error is given when the system’s TOEIC score is equivalent to the average of
the examinees’ TOEIC scores.

By using a t-distribution, the confidence interval (CI) of the system’s TOEIC
score with confidence coefficient 1� a is given by:

CI ¼ C0 � I;C0 þ I½ �
I ¼ rt � t

a
2
; n� 2

� � ð6:5Þ

In Fig. 6.3, I is about 50 points when we employ 0.01 for the value of a Since
we had planned to improve the system performance by 100-point notch in TOEIC
score, the number of examinees (n) was set to 30. n can be set depending on the
degree of improvement that the system aims for using Eq. (6.5).

In the previous evaluation using the translation-paired comparison method, one
evaluator did the whole process shown in Fig. 6.2. We then performed another
evaluation with the same setup but with a different evaluator. The difference
between the two TOEIC scores was just 3.5 points in the case of Fig. 6.3.
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6.5 Costs for the Translation-Paired Comparison Method

The translation-paired comparison method is an effective evaluation method as it
clearly expresses the capability of a system with a TOEIC score. However, this
method requires excessive evaluation costs compared with the traditional methods
including subjective rank evaluation.

The collection of translations done by examinees of various TOEIC scores, is
among one of the tasks that require a certain budget. As shown in Eqs. (6.4) and
(6.5), n—the number of examinees—largely affects the confidence interval of the
system’s TOEIC score. Therefore, reduction in this number makes it difficult to
obtain a reliable evaluation result.

Another cost-consuming task is subjective-paired comparison. Compared to the
conventional evaluations i.e., simple rank evaluation method, the translation-paired
comparison method uses a larger amount of labor because the evaluator must work
on the n number of evaluation sheets for each test utterance. Even with an evaluator
with high expertise, it takes more than two weeks to complete the steps shown in
Fig. 6.2.

6.6 Automatic Method for TOEIC Evaluation

The basic idea of automating the translation-paired comparison method is to sub-
stitute the original human evaluation process i.e., the paired comparison in Fig. 6.1
with an evaluation metric including BLEU [1] and Translation Error Rate (TER).

Since the evaluation metric performs poorly with an individual utterance unit,
we carry out the automation counting the whole test set as one unit. SWR for each
examinee in the original method is substituted for the test set level metric to
calculate the system’s TOEIC score [6].

Figures 6.4 and 6.5 show the system’s TOEIC scores of MT and MT with SR
using BLEU and TER, which have been automatically estimated. In these figures,
the vertical axes represent the system’s TOEIC score, and the horizontal axes
represent the number of references used in the evaluation metrics. Error bars in the
figure show the confidence interval. In these figures white bars indicate the results
in BLEU score, the gray bars indicate the results in TER.

The system’s TOEIC score of MT using the automated method with 16 refer-
ences marked 708 points, while the original translation-paired comparison method
yielded a score of 705. With MT with SR, the proposed method scored 562 points
and the original method was 546.

Considering the reductions in evaluation costs including labor and time, the
performance of the proposed method is highly promising.
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6.7 Conclusions

We proposed a method to measure the capability of a speech translation system
which can be expressed in TOEIC scores. The errors in this method have also been
analyzed. As a result of the error analysis, the number of examinees and its nec-
essary TOEIC score distribution can be estimated depending on the project target.
The method requires an enormous cost, which has also been explained. Back when
this method was first proposed, the TOEIC score of the speech translation system as
a whole was about 700. Considering the latest advance in the performance of
speech recognition and translation components, the TOEIC score of the speech
translation system is estimated to have risen significantly by the time this book is
published in 2018. By the year 2020 when the Global Communication Plan would
come to an end (further details are explained in Chap. 7), the system is expected to
reach a score of 900 or higher which is said to be equivalent to that of a native

Fig. 6.4 Automatically-estimated system’s TOEIC scores (MT)

Fig. 6.5 Automatically-estimated system’s TOEIC scores (MT with SR)
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English speaker. Meanwhile, an automated method has also been proposed and
showed promising results. However, in order to evaluate the system, a certain
amount of foreign language learners and their test results are required, and to
overcome this limitation and utilizing different tests are some of the future tasks that
need to be undertaken.
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Chapter 7
The Future of Speech-to-Speech
Translation

Eiichiro Sumita

Abstract Since English is very different from Japanese in terms of grammar and
vocabulary, it is not an easy task (http://www.effectivelanguagelearning.com/
language-guide/language-difficulty) for a native English speaker to learn Japanese,
and vice versa. Only a small number of native Japanese speakers can speak English,
and the other way around is less likely. The part of the world where the Japanese
language is used is basically limited to Japan. English, known as the “world lan-
guage,” is not commonly used in Japan and neither are other foreign languages.
There is a clear communication barrier between the Japanese and non-natives, and
the large need to overcome this became the motivation for researchers in Japan to
initiate research on automatic speech-to-speech translation. We have so far briefly
looked back on how the state-of-the-art technology was developed, but the fol-
lowing sections will explore some of the near future possibilities of the technology
and how it will likely to be utilized in society before and after the year 2020.

7.1 The Future up to the Year 2020

As described in Chap. 6, the performance of speech translation can be measured by
a scale, namely Test of English for International Communication (TOEIC). In the
year 2000 when this measurement method was proposed, the system had already
reached 600 points (out of 990). Considering the innovations in technology over the
20 years, by the year 2020—the final year of the Global Communication Plan
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(GCP)—we can expect the system to achieve a very high score. It is of great
significance that with the use of such high-precision systems, people who are not
good at learning foreign languages can extend their abilities and the ripple effect
that this has is huge.

The GCP aims to achieve the same precision for 10 languages1 including
Japanese and English, not only targeted for tourism, but for disaster resilience and
medical care. Many types of hardware—megaphone type,2 mobile type,3 handsfree
type,4 standalone type5—which are capable of speech translation have been
commercialized.

Figure 7.1 is one example of a handsfree device. Through field experiments on
speech translation carried out in the medical field, it was learned that there are many
situations in which the healthcare staff have their hands full—such as when pro-
viding care in a hospital—and that there was a great need for wearable speech
translation devices that could be used without having to physically touch them.
Technology was able to meet the demands by using small omnidirectional micro-
phones to determine the differences between speakers. Accompanied by these
hardware inventions, speech translation software is being widely accepted in var-
ious fields.

With the widespread of these speech translation systems throughout the country,
by the 2020 Tokyo Olympic and Paralympic Games, Japan is expected to become
one of the most “communication-friendly” countries in the world. The
speech-to-speech translation technology which has been developed based on
research that was initiated in Japan, has spread throughout the world and will return
to Japan to witness its peak.

7.2 The Future Beyond the Year 2020

Among the many tasks that still need to be cleared, (1) high precision all-purpose
translation, (2) simultaneous interpretation, and (3) context-based translation are the
three that are assumed to be unfinished by the year 2020. In other words, there is
still plenty of room for further research and development to be done in the field of
automatic speech-to-speech translation.

1Japanese, English, Chinese, Korean, Indonesian, Thai, Vietnamese, Myanmar, French, and
Spanish.
2http://news.panasonic.com/global/topics/2016/45751.html.
3http://www.nec.com/en/press/201710/global_20171002_02.html.
4http://www.fujitsu.com/global/about/resources/news/press-releases/2017/0919-01.html.
5http://logbar.jp/en/index.html.
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7.2.1 Future Tasks: High Precision All-Purpose Translation
System

The current technology relies heavily on the corpus. The performance improves as
the amount of corpus increases. Conversely, high performance cannot be expected
with an insufficient amount of corpus. A race between organizations that pursue
research and development has begun to see who can collect more data, but the
inconsistent accuracies of many translation services—due to limitations in language
or domain—clearly state that the collection method needs to be reexamined. Thus, a
high precision all-purpose translation system has yet to be realized.

The bilingual corpora are dispersed among different organizations, e.g., private
companies, and local governments. As shown in Fig. 7.2, if all of these bilingual
corpora are accumulated into one public sector and deep learning is applied, the
translation accuracy is expected to rise significantly.

For example, in Japan, a budget of 200 billion yen is being spent on translation
each year. From this, we can estimate that the number of sentences being translated
per year is about 500 million, and in 10 years it will be 5 billion sentences. The
precision that the system will achieve using such large-scale corpus will surpass our
expectations and can be used in every field in need of translation services. The
Government of Japan has named this mechanism “Hon’yaku Bank,” and is pro-
moting development of a machine translation system of the people, by the people,
and for the people.

Fig. 7.1 A wearable, handsfree speech translation device
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7.2.2 Future Tasks: Simultaneous Interpretation

The current speech translation system begins the translation process after one has
finished speaking. The completion of the process will be largely delayed when the
input is long. In order to avoid such delay, the system needs to start processing
before the utterance reaches its end.

Simultaneous interpretation from Japanese into English is especially challenging
due to the difference in word order. The Japanese word order is Subject (S)-Object
(O)-Verb (V), and V—the most important part of speech—is not revealed until the
end of a sentence. English is S-V-O, and V comes after the subject. In order to
translate the V to English from Japanese, one must wait until the Japanese sentence
is completed. An interpreter would however, start translating without waiting for a
sentence to finish, which means that the translation is processed with a prediction
and that the interpreter must go back to make corrections when the translation turns
out to be wrong.

In such way, simultaneous interpretation is difficult even for humans, and to
realize simultaneous interpretation using a computer, it requires a great deal of time
and a huge breakthrough in technology.

On the other hand, a few fundamental research studies [1] have been initiated
and the current system is capable of accommodating the development strategy of
utilizing the system as a supportive tool for international (i.e., multilingual) con-
ferences and gradually improving the performance.

Fig. 7.2 Concept of “Hon’yaku Bank” (“Hon’yaku” is a Japanese word for “translation”)
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7.2.3 Future Tasks: Context-Based Translation

The current speech-to-speech translation system and its elemental technologies only
process translation sentence by sentence, without any consideration of the pre-
ceding sentences.

Studies on context have also been carried out for many years, however, the
applicability and processing speed are some of the issues that still remain.
Translation is often performed by determining the surrounding words. If translating
sentence by sentence would be practical enough, context may not have to be taken
into account.

On the other hand, the latest deep learning techniques have shown significant
results in context understanding. Some of the typical issues in context-based
translation are detecting the omission of the subject—which frequently occurs in
Japanese—and identifying them to perform accurate translation, but in this regard,
it has been reported [2] that deep learning has effectively improved the performance
compared to the conventional methods. The authors expect with great anticipation
that this will further advance the system to accommodate context-based translation.
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